Cáncer de próstata se diagnostica mejor usando la inteligencia artificial
Por el equipo editorial de LabMedica en español Actualizado el 29 Jan 2020 |

Imagen: Microfotografía de una biopsia histológica de un adenocarcinoma prostático, tipo convencional (acinar), la forma más común de cáncer de próstata (Fotografía cortesía de Nephron).
El cáncer de próstata es un tipo de cáncer frecuente, pero no siempre agresivo: mueren más hombres con cáncer de próstata que por cáncer de próstata. Sin embargo, su tratamiento tiene muchas consecuencias para la calidad de vida de los pacientes, por lo que poder determinar la agresividad es un paso importante para elegir un tratamiento.
Para determinar la agresividad del cáncer, se toman biopsias de la próstata, que son cualificadas por un patólogo. Este “puntaje de Gleason” se usa, a continuación, para clasificar las biopsias en cinco grupos, los Grupos de Grado de Gleason, que indican el riesgo de morir debido al cáncer de próstata. Sin embargo, este es un proceso subjetivo; si el paciente es tratado y cómo, puede depender del patólogo que evalúa el tejido.
Un equipo de científicos del Centro Médico de la Universidad Radboud (Nijmegen, Países Bajos) desarrolló un sistema de IA que examina esas biopsias de la misma manera en que lo hace un patólogo. El sistema de IA también determina el puntaje de Gleason, y luego el sistema puede clasificar una biopsia de acuerdo con los Grupos de Grado de Gleason. Mediante el aprendizaje profundo, el sistema examinó miles de imágenes de biopsias para saber qué es una próstata sana y cómo se ve el tejido de cáncer de próstata más o menos agresivo. Se usó una técnica de etiquetado semiautomático para evitar la necesidad de anotaciones manuales por parte de los patólogos, utilizando los informes de los patólogos como el estándar de referencia durante el entrenamiento. El sistema fue desarrollado para delinear glándulas individuales, asignar patrones de crecimiento de Gleason y determinar el grado a nivel de biopsia.
Los investigadores recolectaron 5.759 biopsias de 1.243 pacientes. El sistema desarrollado logró un alto acuerdo con el estándar de referencia y obtuvo un puntaje alto en los umbrales de decisión clínica: benigno versus maligno (área bajo la curva 0,99), grupo de grado de 2 o más (0,978) y grupo de grado 3 o más (0,974). En un experimento de observación, el sistema de aprendizaje profundo obtuvo una puntuación más alta (kappa 0,854) que el panel (kappa mediana 0,819), superando a 10 de 15 observadores patólogos. En el conjunto de datos de prueba externo, el sistema obtuvo una concordancia alta con el estándar de referencia establecido independientemente por dos patólogos (kappa cuadrático de Cohen 0,723 y 0,707) y dentro de la variabilidad interobservador (kappa 0,71).
Los autores concluyeron que su sistema automatizado de aprendizaje profundo logró un desempeño similar al de los patólogos para la clasificación de Gleason y podría contribuir, potencialmente, al diagnóstico de cáncer de próstata. El sistema podría ayudar potencialmente a los patólogos mediante el examen de biopsias, proporcionando segundas opiniones sobre el grado y presentando mediciones cuantitativas de los porcentajes de volumen. El estudio fue publicado el 8 de enero de 2020 en la revista The Lancet Oncology.
Enlace relacionado:
Centro Médico de la Universidad Radboud
Para determinar la agresividad del cáncer, se toman biopsias de la próstata, que son cualificadas por un patólogo. Este “puntaje de Gleason” se usa, a continuación, para clasificar las biopsias en cinco grupos, los Grupos de Grado de Gleason, que indican el riesgo de morir debido al cáncer de próstata. Sin embargo, este es un proceso subjetivo; si el paciente es tratado y cómo, puede depender del patólogo que evalúa el tejido.
Un equipo de científicos del Centro Médico de la Universidad Radboud (Nijmegen, Países Bajos) desarrolló un sistema de IA que examina esas biopsias de la misma manera en que lo hace un patólogo. El sistema de IA también determina el puntaje de Gleason, y luego el sistema puede clasificar una biopsia de acuerdo con los Grupos de Grado de Gleason. Mediante el aprendizaje profundo, el sistema examinó miles de imágenes de biopsias para saber qué es una próstata sana y cómo se ve el tejido de cáncer de próstata más o menos agresivo. Se usó una técnica de etiquetado semiautomático para evitar la necesidad de anotaciones manuales por parte de los patólogos, utilizando los informes de los patólogos como el estándar de referencia durante el entrenamiento. El sistema fue desarrollado para delinear glándulas individuales, asignar patrones de crecimiento de Gleason y determinar el grado a nivel de biopsia.
Los investigadores recolectaron 5.759 biopsias de 1.243 pacientes. El sistema desarrollado logró un alto acuerdo con el estándar de referencia y obtuvo un puntaje alto en los umbrales de decisión clínica: benigno versus maligno (área bajo la curva 0,99), grupo de grado de 2 o más (0,978) y grupo de grado 3 o más (0,974). En un experimento de observación, el sistema de aprendizaje profundo obtuvo una puntuación más alta (kappa 0,854) que el panel (kappa mediana 0,819), superando a 10 de 15 observadores patólogos. En el conjunto de datos de prueba externo, el sistema obtuvo una concordancia alta con el estándar de referencia establecido independientemente por dos patólogos (kappa cuadrático de Cohen 0,723 y 0,707) y dentro de la variabilidad interobservador (kappa 0,71).
Los autores concluyeron que su sistema automatizado de aprendizaje profundo logró un desempeño similar al de los patólogos para la clasificación de Gleason y podría contribuir, potencialmente, al diagnóstico de cáncer de próstata. El sistema podría ayudar potencialmente a los patólogos mediante el examen de biopsias, proporcionando segundas opiniones sobre el grado y presentando mediciones cuantitativas de los porcentajes de volumen. El estudio fue publicado el 8 de enero de 2020 en la revista The Lancet Oncology.
Enlace relacionado:
Centro Médico de la Universidad Radboud
Últimas Tecnología noticias
- Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos
- Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
- Biosensor basado en papel para detectar glucosa mediante sudor revoluciona tratamiento de diabetes
Canales
Química Clínica
ver canal
Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma
El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... MásDiagnóstico Molecular
ver canal
Herramienta genética predice supervivencia de pacientes con cáncer de páncreas
Un marcador tumoral es una sustancia presente en el organismo que puede indicar la presencia de cáncer. Estas sustancias, que pueden incluir proteínas, genes, moléculas u otros compuestos... Más
Prueba de orina diagnostica cáncer de próstata inicial
El cáncer de próstata es una de las principales causas de muerte en hombres a nivel mundial. Un desafío importante para diagnosticar la enfermedad es la ausencia de biomarcadores confiables... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
La meningitis bacteriana es una afección potencialmente mortal: uno de cada seis pacientes fallece y la mitad de los supervivientes experimentan síntomas persistentes. Por lo tanto, un d... Más
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... MásTecnología
ver canal
Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos
Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más