Aprendizaje automático detecta el cáncer analizando el ADN en las muestras de sangre
Por el equipo editorial de LabMedica en español Actualizado el 19 Jun 2019 |

Imagen: Una prueba nueva de biopsia líquida llamada DELFI (evaluación de ADN de fragmentos para una interceptación temprana) utiliza inteligencia artificial para detectar pacientes con cáncer identificando fragmentaciones alteradas de ADN en la sangre (Fotografía cortesía de Carolyn Hruban, Universidad Johns Hopkins).
Los investigadores han descrito un enfoque de prueba de principio para el cribado, la detección temprana y el seguimiento del cáncer humano basado en un enfoque de aprendizaje automático que evalúa los patrones de fragmentación del ADN libre de células, en todo el genoma.
Si bien el ADN libre de células en la sangre proporciona una vía de diagnóstico no invasiva para los pacientes con cáncer, las características de los orígenes y las características moleculares del ADN libre de células son poco conocidas. Para corregir esta falta, los investigadores de la Universidad Johns Hopkins (Baltimore, MD, EUA) desarrollaron un enfoque basado en el aprendizaje automático para identificar patrones anormales de fragmentos de ADN en la sangre de los pacientes con cáncer.
Utilizaron este método DELFI (evaluación de ADN de fragmentos para la interceptación temprana) con el fin de analizar los perfiles de fragmentación de 236 pacientes con cáncer de mama, colorrectal, pulmón, ovario, páncreas, estómago o bilis y de 245 personas sanas.
El modelo de aprendizaje automático incorporó características de fragmentación del genoma con sensibilidades de detección que oscilaron entre el 57% y más del 99% entre los siete tipos de cáncer con una especificidad del 98%. Los perfiles de fragmentación se podrían usar para identificar el tejido de origen de los cánceres a un número limitado de sitios en el 75% de los casos. La combinación de este enfoque con el análisis de ADN libre de células basado en mutaciones detectó el 91% de los pacientes con cáncer.
“Por diversas razones, un genoma de cáncer está empaquetado de una manera muy desorganizada, lo que significa que cuando las células cancerosas mueren, liberan su ADN de forma caótica en el torrente sanguíneo”, dijo la primera autora, la Dra. Jillian Phallen, investigadora postdoctoral en la Universidad Johns Hopkins. “Al examinar este ADN libre de células (cfADN), DELFI ayuda a identificar la presencia de cáncer mediante la detección de anomalías en el tamaño y la cantidad de ADN en diferentes regiones del genoma en función de cómo está empaquetado”.
“Nos alienta el potencial de DELFI porque analiza un conjunto completamente independiente de características de ADN libre de células, de aquellas que han planteado dificultades a lo largo de los años, y esperamos trabajar con nuestros colaboradores de todo el mundo para que esta prueba esté disponible para los pacientes”, dijo el autor principal, el Dr. Victor E. Velculescu, profesor de oncología en la Universidad Johns Hopkins.
El método DELFI se describió en la edición en línea del 29 de mayo de 2019 de la revista Nature.
Enlace relacionado:
Johns Hopkins University
Si bien el ADN libre de células en la sangre proporciona una vía de diagnóstico no invasiva para los pacientes con cáncer, las características de los orígenes y las características moleculares del ADN libre de células son poco conocidas. Para corregir esta falta, los investigadores de la Universidad Johns Hopkins (Baltimore, MD, EUA) desarrollaron un enfoque basado en el aprendizaje automático para identificar patrones anormales de fragmentos de ADN en la sangre de los pacientes con cáncer.
Utilizaron este método DELFI (evaluación de ADN de fragmentos para la interceptación temprana) con el fin de analizar los perfiles de fragmentación de 236 pacientes con cáncer de mama, colorrectal, pulmón, ovario, páncreas, estómago o bilis y de 245 personas sanas.
El modelo de aprendizaje automático incorporó características de fragmentación del genoma con sensibilidades de detección que oscilaron entre el 57% y más del 99% entre los siete tipos de cáncer con una especificidad del 98%. Los perfiles de fragmentación se podrían usar para identificar el tejido de origen de los cánceres a un número limitado de sitios en el 75% de los casos. La combinación de este enfoque con el análisis de ADN libre de células basado en mutaciones detectó el 91% de los pacientes con cáncer.
“Por diversas razones, un genoma de cáncer está empaquetado de una manera muy desorganizada, lo que significa que cuando las células cancerosas mueren, liberan su ADN de forma caótica en el torrente sanguíneo”, dijo la primera autora, la Dra. Jillian Phallen, investigadora postdoctoral en la Universidad Johns Hopkins. “Al examinar este ADN libre de células (cfADN), DELFI ayuda a identificar la presencia de cáncer mediante la detección de anomalías en el tamaño y la cantidad de ADN en diferentes regiones del genoma en función de cómo está empaquetado”.
“Nos alienta el potencial de DELFI porque analiza un conjunto completamente independiente de características de ADN libre de células, de aquellas que han planteado dificultades a lo largo de los años, y esperamos trabajar con nuestros colaboradores de todo el mundo para que esta prueba esté disponible para los pacientes”, dijo el autor principal, el Dr. Victor E. Velculescu, profesor de oncología en la Universidad Johns Hopkins.
El método DELFI se describió en la edición en línea del 29 de mayo de 2019 de la revista Nature.
Enlace relacionado:
Johns Hopkins University
Últimas Patología noticias
- Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
- Nuevo método basado en láser acelera diagnóstico del cáncer
- Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
- Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
- Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
- Sistema de cultivo celular 3D podría revolucionar diagnóstico del cáncer
- Técnica indolora mide concentraciones de glucosa en solución y tejido mediante ondas sonoras
- Prueba cutánea mejora diagnóstico de enfermedades neurodegenerativas raras y debilitantes
- Uromodulina sérica podría indicar lesión renal aguda en pacientes con COVID-19
- Modelo de IA revela edad biológica real con cinco gotas de sangre
- Herramienta de IA pionera visualiza la "red social" de las células para tratar el cáncer
- Prueba diagnostica tumores cerebrales infantiles de alto riesgo
- Dispositivo microfluídico evalúa adherencia de células tumorales para predecir propagación del cáncer
- Nueva herramienta de IA mejora métodos anteriores para identificar cáncer colorrectal en muestras de tejido
- Técnica predice tumores agresivos antes de que hagan metástasis
- Técnica de imágenes inspirada en alas de mariposa permite diagnóstico rápido del cáncer
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Novedosa tecnología en POC ofrece resultados precisos del VIH en minutos
Los métodos de diagnóstico del VIH se han basado tradicionalmente en la detección de anticuerpos específicos del VIH, que suelen aparecer semanas después de la infección.... Más
Análisis de sangre descarta riesgo futuro de demencia
Estudios previos han sugerido que biomarcadores específicos, como tau217, neurofilamento ligero (NfL) y proteína ácida fibrilar glial (GFAP), podrían ser valiosos para el d... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... Más
Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... MásTecnología
ver canal
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... Más
Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
Los rápidos avances tecnológicos pronto permitirán que las personas eviten procedimientos médicos invasivos simplemente subiendo una captura de pantalla de sus resultados de... MásIndustria
ver canal
Grifols e IBL de Tecan colaboran en paneles de biomarcadores avanzados
Grifols (Barcelona, España), uno de los principales productores mundiales de medicamentos derivados del plasma y soluciones de diagnóstico innovadoras, está ampliando su oferta en... Más