Microscopios en teléfonos inteligentes se transforman en dispositivos de laboratorio
Por el equipo editorial de LabMedica en español Actualizado el 23 May 2018 |

Imagen: Los dispositivos impresos en 3D pueden capturar imágenes microscópicas cuando se conectan a la lente de una cámara de un teléfono inteligente (Fotografía cortesía del Grupo de Investigación Ozcan/UCLA).
Los teléfonos móviles han facilitado la creación de tecnologías de adquisición de imágenes y detección rentables y de campo que se acercan al desempeño de los instrumentos de laboratorio. Sin embargo, las interfaces de imágenes ópticas de los teléfonos móviles no están diseñadas para microscopía y producen distorsiones en las imágenes microscópicas.
Recientemente se ha demostrado que el aprendizaje profundo, una forma poderosa de inteligencia artificial, puede discernir y mejorar los detalles microscópicos en las fotos tomadas por los teléfonos inteligentes. La técnica mejora la resolución y los detalles de color de las imágenes de los teléfonos inteligentes tanto que se acercan a la calidad de las imágenes de microscopios de laboratorio.
Los bioingenieros de la Facultad de Ingeniería Samueli de la Universidad de California (Los Ángeles, CA; EUA) fotografiaron imágenes de muestras de tejido pulmonar, sangre y frotis de Papanicolaou, utilizando, inicialmente, un microscopio de laboratorio estándar y luego con un teléfono inteligente con el accesorio de microscopio impreso en 3D. Los científicos luego alimentaron los pares de imágenes correspondientes en un sistema informático que “aprende” cómo mejorar rápidamente las imágenes de los teléfonos móviles. El proceso se basa en un código de computadora basado en el aprendizaje profundo que habían desarrollado.
El uso del aprendizaje profundo para corregir tales distorsiones introducidas por los microscopios, basados en teléfonos móviles, facilita la producción de imágenes de alta resolución, eliminadas y corregidas por colores, igualando el desempeño de los microscopios de sobremesa con lentes objetivos de alta gama, extendiendo también su profundidad de campo limitada. Después de entrenar una red neuronal convolucional, obtuvieron imágenes de varias muestras, incluyendo cortes de tejido humano y de Papanicolaou y frotis de sangre, donde las imágenes grabadas estaban altamente comprimidas para facilitar el almacenamiento y la transmisión. La técnica utiliza accesorios que se pueden producir de forma económica con una impresora 3D, a menos de 100 dólares por pieza, frente a los miles de dólares que costaría comprar equipos de laboratorio que produzcan imágenes de calidad similar.
Aydogan Ozcan, PhD, profesor de Ingeniería Eléctrica e Informática y Bioingeniería, dijo: “Usando el aprendizaje profundo, nos propusimos cerrar la brecha en la calidad de la imagen entre los microscopios económicos basados en teléfonos móviles y los microscopios de mesa que son el estándar de oro que utilizan lentes de alta tecnología. Creemos que nuestro método es ampliamente aplicable a otros sistemas de microscopía de bajo costo que usan, por ejemplo, lentes o cámaras de bajo costo, y podría facilitar el reemplazo de microscopios de mesa de gama alta por alternativas móviles rentables”. El estudio fue publicado en línea el 15 de marzo de 2018 en la revista ACS Photonics.
Recientemente se ha demostrado que el aprendizaje profundo, una forma poderosa de inteligencia artificial, puede discernir y mejorar los detalles microscópicos en las fotos tomadas por los teléfonos inteligentes. La técnica mejora la resolución y los detalles de color de las imágenes de los teléfonos inteligentes tanto que se acercan a la calidad de las imágenes de microscopios de laboratorio.
Los bioingenieros de la Facultad de Ingeniería Samueli de la Universidad de California (Los Ángeles, CA; EUA) fotografiaron imágenes de muestras de tejido pulmonar, sangre y frotis de Papanicolaou, utilizando, inicialmente, un microscopio de laboratorio estándar y luego con un teléfono inteligente con el accesorio de microscopio impreso en 3D. Los científicos luego alimentaron los pares de imágenes correspondientes en un sistema informático que “aprende” cómo mejorar rápidamente las imágenes de los teléfonos móviles. El proceso se basa en un código de computadora basado en el aprendizaje profundo que habían desarrollado.
El uso del aprendizaje profundo para corregir tales distorsiones introducidas por los microscopios, basados en teléfonos móviles, facilita la producción de imágenes de alta resolución, eliminadas y corregidas por colores, igualando el desempeño de los microscopios de sobremesa con lentes objetivos de alta gama, extendiendo también su profundidad de campo limitada. Después de entrenar una red neuronal convolucional, obtuvieron imágenes de varias muestras, incluyendo cortes de tejido humano y de Papanicolaou y frotis de sangre, donde las imágenes grabadas estaban altamente comprimidas para facilitar el almacenamiento y la transmisión. La técnica utiliza accesorios que se pueden producir de forma económica con una impresora 3D, a menos de 100 dólares por pieza, frente a los miles de dólares que costaría comprar equipos de laboratorio que produzcan imágenes de calidad similar.
Aydogan Ozcan, PhD, profesor de Ingeniería Eléctrica e Informática y Bioingeniería, dijo: “Usando el aprendizaje profundo, nos propusimos cerrar la brecha en la calidad de la imagen entre los microscopios económicos basados en teléfonos móviles y los microscopios de mesa que son el estándar de oro que utilizan lentes de alta tecnología. Creemos que nuestro método es ampliamente aplicable a otros sistemas de microscopía de bajo costo que usan, por ejemplo, lentes o cámaras de bajo costo, y podría facilitar el reemplazo de microscopios de mesa de gama alta por alternativas móviles rentables”. El estudio fue publicado en línea el 15 de marzo de 2018 en la revista ACS Photonics.
Últimas Tecnología noticias
- Algoritmos predictivos avanzados identifican pacientes con cáncer no diagnosticado
- Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos
- Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
Canales
Química Clínica
ver canal
Análisis de sangre con IA detecta cáncer de ovario
El cáncer de ovario se ubica como la quinta causa principal de muerte por cáncer en mujeres, debido principalmente a diagnósticos en etapas tardías. Si bien más del 90... Más
Ensayo automatizado y descentralizado de NGS deADNlc identifica alteraciones en tumores sólidos avanzados
Los análisis actuales de ADN libre circulante (ADNlc) suelen estar centralizados, lo que requiere un manejo y transporte especializados de las muestras. La introducción de un sistema de ... MásDiagnóstico Molecular
ver canal
Innovadora prueba de diagnóstico molecular señala con precisión principal causa genética de EPOC
La enfermedad pulmonar obstructiva crónica (EPOC) y la deficiencia de alfa-1 antitripsina (DAAT) son afecciones que pueden causar dificultades respiratorias, pero difieren en su origen y herencia.... Más
Prueba diagnóstica de sangre detecta espondiloartritis axial
La espondiloartritis axial (EspAax) es una enfermedad autoinmune inflamatoria crónica que suele afectar a las personas durante sus años más productivos, y cuyos síntomas suelen manifestarse antes de los 45 años.... MásHematología
ver canal
Primera prueba de monitorización de heparina POC proporciona resultados rápidos
La dosificación de heparina requiere un manejo cuidadoso para evitar complicaciones hemorrágicas y de coagulación. En situaciones de alto riesgo, como la oxigenación por membrana... Más
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Prueba molecular de heces muestra potencial para diagnosticar tuberculosis en adultos con VIH
La tuberculosis (TB), causada por la bacteria Mycobacterium tuberculosis, provocó 1,25 millones de muertes en 2023, de las cuales el 13 % se produjeron en personas con VIH. El principal método... Más
Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
La meningitis bacteriana es una afección potencialmente mortal: uno de cada seis pacientes fallece y la mitad de los supervivientes experimentan síntomas persistentes. Por lo tanto, un d... MásPatología
ver canal
Innovador algoritmo de triaje del dolor torácico transforma la atención cardíaca
Las enfermedades cardiovasculares son responsables de un tercio de las muertes en todo el mundo, y el dolor torácico es la segunda causa más común de visitas a urgencias.... Más
Enfoque de biopsia líquida basado en IA revolucionará detección del cáncer cerebral
Detectar cánceres cerebrales sigue siendo extremadamente difícil, ya que muchos pacientes solo reciben un diagnóstico en etapas avanzadas, tras la aparición de síntomas... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más