Uso del grafeno para detectar células cancerosas
Por el equipo editorial de LabMedica en español Actualizado el 04 Jan 2017 |

Imagen: Células cerebrales normales y cancerosas haciendo interfaz con el grafeno y mostrando diferentes niveles de actividad utilizando la espectroscopía Raman (Fotografía cortesía de Vikas Berry, Universidad de Illinois en Chicago).
Utilizando la espectroscopia Raman en el desarrollo de una nueva tecnología, que podría mejorar el diagnóstico y la monitorización del cáncer, los investigadores han utilizado por primera vez el grafeno para poder diferenciar el cáncer de las células sanas. El sistema también podría utilizarse para diferenciar entre varios tipos de células o actividades celulares.
Haciendo la interfaz de las células cerebrales con el grafeno, los investigadores de la Universidad de Illinois en Chicago (Chicago, IL, EUA) han demostrado que pueden diferenciar una sola célula cancerosa hiperactiva de una célula normal, señalando el camino para poder desarrollar una herramienta no invasiva o menos invasiva para el diagnóstico precoz del cáncer. “Este sistema de grafeno es capaz de detectar el nivel de actividad de una sola célula en interfaz”, dijo Vikas Berry, profesor asociado de la UIC, quien dirigió la investigación junto con Ankit Mehta, profesor asistente de la Facultad de Medicina en la UIC.
“El grafeno es el material más delgado conocido y es muy sensible a lo que sucede en su superficie”, agregó el profesor Berry. El nanomaterial se compone de una sola capa de átomos de carbono unidos en un patrón hexagonal en forma de alambre de gallinero y todos los átomos comparten una nube de electrones que se mueven libremente alrededor de la superficie. “La interfaz de la célula con el grafeno reordena la distribución de la carga en el grafeno, lo cual modifica la energía de la vibración atómica detectada por la espectroscopia Raman”, explicó. La espectroscopia Raman se utiliza rutinariamente para estudiar el grafeno. La energía de vibración atómica en la red cristalina del grafeno difiere, dependiendo de si está en contacto con una célula cancerosa o una célula normal porque la hiperactividad de la célula cancerosa conduce a una carga negativa más alta en su superficie y a la liberación de más protones. El campo eléctrico alrededor de la célula expulsa a los electrones de la nube de electrones del grafeno, que cambia la energía de vibración de los átomos de carbono. El cambio en la energía de vibración puede ser señalado por mapeo Raman, con una resolución de 300 nanómetros, una situación que permite caracterizar la actividad de una sola célula.
Recientemente, el profesor Berry y otros compañeros de trabajo habían introducido ondulaciones a nanoescala en el grafeno, haciendo que se comportara de manera diferente en direcciones perpendiculares, útil para la electrónica. Ellos arrugaron el grafeno cubriéndolo con una cadena de bacterias en forma de bacilos y luego redujeron los gérmenes utilizando el vacío. “Tomamos el trabajo anterior y hasta cierto punto, lo volteamos”, dijo el Prof. Berry, “En lugar de colocar grafeno en las células, pusimos células en el grafeno y estudiamos las vibraciones atómicas del grafeno”.
El nuevo estudio examinó las células cerebrales humanas cultivadas, comparando los astrocitos normales con su contraparte cancerosa, el tumor cerebral, altamente maligno, glioblastoma multiforme. La técnica se está estudiando ahora en un modelo de cáncer de ratón, con resultados que son “muy prometedores”, dijo el profesor Berry. Los experimentos con biopsias de pacientes se harán más adelante.
“Una vez que a un paciente le practican una cirugía para un tumor cerebral, podríamos usar esta técnica para ver si el tumor recae”, dijo el Prof. Berry, “Para esto, necesitaríamos una muestra de células que podríamos hacer interactuar con el grafeno y ver si las células cancerosas aún están presentes”.
La misma técnica también puede trabajar para diferenciar otros tipos de células o la actividad de las células. “Podemos utilizarlo con bacterias para ver rápidamente si la cepa es Gram-positiva o Gram-negativa”, dijo el Prof. Berry, “Podemos ser capaces de usarlo para detectar células falciformes”.
El estudio, publicado por Keisham B et al, fue publicado el 14 de noviembre de 2016 en la revista ACS Applied Materials and Interfaces.
Enlace relacionado:
University of Illinois at Chicago
Haciendo la interfaz de las células cerebrales con el grafeno, los investigadores de la Universidad de Illinois en Chicago (Chicago, IL, EUA) han demostrado que pueden diferenciar una sola célula cancerosa hiperactiva de una célula normal, señalando el camino para poder desarrollar una herramienta no invasiva o menos invasiva para el diagnóstico precoz del cáncer. “Este sistema de grafeno es capaz de detectar el nivel de actividad de una sola célula en interfaz”, dijo Vikas Berry, profesor asociado de la UIC, quien dirigió la investigación junto con Ankit Mehta, profesor asistente de la Facultad de Medicina en la UIC.
“El grafeno es el material más delgado conocido y es muy sensible a lo que sucede en su superficie”, agregó el profesor Berry. El nanomaterial se compone de una sola capa de átomos de carbono unidos en un patrón hexagonal en forma de alambre de gallinero y todos los átomos comparten una nube de electrones que se mueven libremente alrededor de la superficie. “La interfaz de la célula con el grafeno reordena la distribución de la carga en el grafeno, lo cual modifica la energía de la vibración atómica detectada por la espectroscopia Raman”, explicó. La espectroscopia Raman se utiliza rutinariamente para estudiar el grafeno. La energía de vibración atómica en la red cristalina del grafeno difiere, dependiendo de si está en contacto con una célula cancerosa o una célula normal porque la hiperactividad de la célula cancerosa conduce a una carga negativa más alta en su superficie y a la liberación de más protones. El campo eléctrico alrededor de la célula expulsa a los electrones de la nube de electrones del grafeno, que cambia la energía de vibración de los átomos de carbono. El cambio en la energía de vibración puede ser señalado por mapeo Raman, con una resolución de 300 nanómetros, una situación que permite caracterizar la actividad de una sola célula.
Recientemente, el profesor Berry y otros compañeros de trabajo habían introducido ondulaciones a nanoescala en el grafeno, haciendo que se comportara de manera diferente en direcciones perpendiculares, útil para la electrónica. Ellos arrugaron el grafeno cubriéndolo con una cadena de bacterias en forma de bacilos y luego redujeron los gérmenes utilizando el vacío. “Tomamos el trabajo anterior y hasta cierto punto, lo volteamos”, dijo el Prof. Berry, “En lugar de colocar grafeno en las células, pusimos células en el grafeno y estudiamos las vibraciones atómicas del grafeno”.
El nuevo estudio examinó las células cerebrales humanas cultivadas, comparando los astrocitos normales con su contraparte cancerosa, el tumor cerebral, altamente maligno, glioblastoma multiforme. La técnica se está estudiando ahora en un modelo de cáncer de ratón, con resultados que son “muy prometedores”, dijo el profesor Berry. Los experimentos con biopsias de pacientes se harán más adelante.
“Una vez que a un paciente le practican una cirugía para un tumor cerebral, podríamos usar esta técnica para ver si el tumor recae”, dijo el Prof. Berry, “Para esto, necesitaríamos una muestra de células que podríamos hacer interactuar con el grafeno y ver si las células cancerosas aún están presentes”.
La misma técnica también puede trabajar para diferenciar otros tipos de células o la actividad de las células. “Podemos utilizarlo con bacterias para ver rápidamente si la cepa es Gram-positiva o Gram-negativa”, dijo el Prof. Berry, “Podemos ser capaces de usarlo para detectar células falciformes”.
El estudio, publicado por Keisham B et al, fue publicado el 14 de noviembre de 2016 en la revista ACS Applied Materials and Interfaces.
Enlace relacionado:
University of Illinois at Chicago
Últimas Tecnología noticias
- Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
- Biosensor basado en papel para detectar glucosa mediante sudor revoluciona tratamiento de diabetes
- Análisis de sangre con IA identifica pacientes en etapa más temprana del cáncer de mama
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de sangre única detecta enfermedades relacionadas con traumatismos
En el acelerado mundo actual, el estrés y el trauma se han convertido, lamentablemente, en experiencias comunes para muchas personas. La exposición continua a las hormonas del estrés... Más
Gen clave identificado en enfermedad cardíaca común revela potencial diagnóstico que salva vidas
La miocardiopatía hipertrófica (MCH) es la cardiopatía hereditaria más prevalente a nivel mundial, afectando aproximadamente a 1 de cada 200 personas y siendo una de las principales... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Enfoque diagnóstico innovador mejora significativamente la detección de tuberculosis
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, con 10,8 millones de casos nuevos y 1,25 millones de muertes reportadas en 2023. La detección temprana... Más
Método de detección rápido, ultrasensible y sin PCR hace el análisis genético más accesible
Las pruebas genéticas han sido un método importante para detectar enfermedades infecciosas, diagnosticar cáncer en etapa temprana, garantizar la seguridad alimentaria y analizar ADN ambiental.... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más