Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Aprendizaje automático reduce radicalmente la carga de trabajo del recuento de células para el diagnóstico de enfermedades

Por el equipo editorial de LabMedica en español
Actualizado el 02 Jun 2022
Print article
Imagen: el nuevo método de entrenamiento permite al aprendizaje automático contar con mayor precisión las células sanguíneas (foto cortesía de Pexels)
Imagen: el nuevo método de entrenamiento permite al aprendizaje automático contar con mayor precisión las células sanguíneas (foto cortesía de Pexels)

El uso del aprendizaje automático para realizar recuentos de células sanguíneas para el diagnóstico de enfermedades, en lugar de máquinas de análisis de células costosas y, a menudo, menos precisas, ha sido muy laborioso, ya que requiere una enorme cantidad de trabajo de anotación manual por parte de humanos en el entrenamiento del modelo de aprendizaje automático. Ahora, los investigadores han desarrollado un nuevo método de entrenamiento que automatiza gran parte de esta actividad.

Investigadores de la Universidad de Benihang (Beijing, China) han desarrollado el nuevo esquema para entrenar una red neuronal convolucional (CNN), un tipo de aprendizaje automático que refleja la estructura de conexión de la corteza visual humana. La cantidad y el tipo de células en la sangre a menudo desempeñan un papel crucial en el diagnóstico de enfermedades, pero las técnicas de análisis celular comúnmente utilizadas para realizar dicho recuento de células sanguíneas, que involucran la detección y medición de las características físicas y químicas de las células suspendidas en el fluido, son costosas y requieren preparaciones complejas. Peor aún, la precisión de las máquinas analizadoras de células es solo de aproximadamente el 90 % debido a diversas influencias, como la temperatura, el pH, el voltaje y el campo magnético, que pueden confundir al equipo.

Con el fin de mejorar la precisión, reducir la complejidad y reducir los costos, últimamente gran parte de la investigación sobre alternativas se ha centrado en el uso de programas informáticos para realizar la "segmentación" en fotografías de la sangre tomadas por una cámara de alta definición conectada a un microscopio. La segmentación involucra algoritmos que realizan un etiquetado píxel por píxel de lo que aparece en una foto, en este caso, qué partes de la imagen son células y cuáles no, en esencia, contar el número de células en una imagen. Para las imágenes en las que aparece un solo tipo de célula, estos métodos logran un nivel de precisión aceptable, pero su funcionamiento es deficiente cuando se enfrentan a imágenes con múltiples tipos de células. Por lo que, en los últimos años, en un intento por resolver el problema, los investigadores recurrieron a las CNN.

Para que la CNN realice esta tarea, primero debe estar “entrenada” para comprender qué es y qué no es una célula en miles de imágenes de células que los humanos han etiquetado manualmente. Luego, cuando se alimenta con una nueva imagen sin etiquetar, reconoce y puede contar las células en ella. Los investigadores de la Universidad de Beihang desarrollaron un nuevo esquema para entrenar la CNN, en este caso, U-Net, un modelo de segmentación de red completamente convolucional que ha sido ampliamente utilizado en la segmentación de imágenes médicas desde que se desarrolló por primera vez en 2015. En el nuevo esquema de entrenamiento, la CNN primero se entrena en un conjunto de muchos miles de imágenes con un solo tipo de célula (tomadas de la sangre de ratones).

Estas imágenes de un solo tipo de célula son "preprocesadas" automáticamente por algoritmos convencionales que reducen el ruido en las imágenes, mejoran su calidad y detectan los contornos de los objetos en la imagen. Luego realizan una segmentación de imagen adaptativa. Este último algoritmo calcula los distintos niveles de gris en una imagen en blanco y negro, y si una parte de la imagen se encuentra más allá de un cierto umbral de gris, el algoritmo la segmenta como un objeto distinto. Lo que hace que el proceso sea adaptativo es que, en lugar de segmentar partes de los segmentos de la imagen de acuerdo con un umbral de gris fijo, lo hace de acuerdo con las características locales de la imagen.

Después de que el conjunto de entrenamiento de un solo tipo de célula se presenta al modelo U-Net, el modelo se ajusta utilizando un pequeño conjunto de imágenes anotadas manualmente de múltiples tipos de células. En comparación, queda una cierta cantidad de anotaciones manuales, y la cantidad de imágenes que los humanos deben etiquetar se reduce de lo que antes eran muchos miles a solo 600. Para probar su esquema de entrenamiento, los investigadores primero usaron un analizador de células tradicional en la misma muestra de sangre de ratón para hacer un conteo de células independiente, contra el cual podrían comparar su nuevo enfoque. Descubrieron que la precisión de su esquema de entrenamiento en la segmentación de imágenes de múltiples tipos de células fue del 94,85 %, que es el mismo nivel alcanzado por el entrenamiento con imágenes de múltiples tipos de células anotadas manualmente. La técnica también se puede aplicar a modelos más avanzados para considerar problemas de segmentación más complejos. Dado que la nueva técnica de entrenamiento aún implica cierto nivel de anotación manual, los investigadores esperan desarrollar un algoritmo completamente automático para anotar y entrenar modelos.

Enlaces relacionados:
Universidad de Benihang  

Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Miembro Oro
PRUEBA DE INMUNOENSAYO DE XILAZINA
Xylazine ELISA

Print article

Canales

Química Clínica

ver canal
Imagen: Alcanzando velocidades de hasta 6.000 rpm, esta centrífuga forma la base de un nuevo tipo de prueba biomédica POC económica (Fotografía cortesía de la Universidad de Duke)

Prueba biomédica POC hace girar una gota de agua utilizando ondas sonoras para detección del cáncer

Los exosomas, pequeñas biopartículas celulares que transportan un conjunto específico de proteínas, lípidos y materiales genéticos, desempeñan un papel... Más

Diagnóstico Molecular

ver canal
Imagen: Los materiales MOF enriquecen eficientemente el ADNlc y el ARNlc en la sangre a través de un proceso operativo simple (Fotografía cortesía de Science China Press)

Técnica de enriquecimiento de ácido nucleico circulante en sangre permite diagnóstico no invasivo del cáncer de hígado

La capacidad de diagnosticar enfermedades de forma temprana puede optimizar significativamente la eficacia de los tratamientos clínicos y mejorar las tasas de supervivencia. Un enfoque prometedor... Más

Inmunología

ver canal
Imagen: El método de prueba podría ayudar a algunos pacientes con cáncer a un tratamiento más efectivo (Fotografía cortesía de 123RF)

Método de prueba podría ayudar a más pacientes recibir tratamiento adecuado contra el cáncer

El tratamiento del cáncer no siempre es una solución única, pero el campo de la investigación del cáncer está dando grandes pasos para encontrar a los pacientes los tratamientos más eficaces para sus afecciones... Más

Microbiología

ver canal
Imagen: El método predice si es probable que un niño desarrolle sepsis y entre en falla orgánica (Fotografía cortesía de 123RF)

Análisis de sangre predice sepsis e insuficiencia orgánica en niños

La sepsis plantea un riesgo grave en el que una reacción inmune grave a la infección provoca daño a los órganos. Identificar la sepsis en niños es complejo ya que los... Más

Patología

ver canal
Imagen: El procedimiento en el consultorio médico detecta el biomarcador clave en Parkinson y enfermedades neurodegenerativas relacionadas (Fotografía cortesía de BIDMC)

Prueba simple de biopsia de piel detecta el Parkinson y enfermedades neurodegenerativas relacionadas

La enfermedad de Parkinson y un grupo de trastornos neurodegenerativos relacionados conocidos como sinucleinopatías afectan a millones de personas en todo el mundo. Estas afecciones, incluida la... Más

Tecnología

ver canal
Imagen: El sensor electroquímico detecta HPV-16 y HPV-18 con alta especificidad (Fotografía cortesía de 123RF)

Biosensor de ADN permite diagnóstico temprano del cáncer de cuello uterino

El disulfuro de molibdeno (MoS2), reconocido por su potencial para formar nanoláminas bidimensionales como el grafeno, es un material que llama cada vez más la atención de la comunidad... Más