LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

IA no supervisada predice la progresión de la COVID y la supervivencia de los pacientes directamente de nuevas imágenes de TC del tórax

Por el equipo editorial de LabMedica en español
Actualizado el 02 Sep 2021
ilustración
ilustración
La inteligencia artificial (IA) no supervisada ha abierto nuevos caminos al predecir la progresión de la COVID-19 y la supervivencia de los pacientes directamente a partir de sus imágenes de tomografía computarizada (TC) de tórax.

En un estudio multicéntrico, un equipo de investigación del Hospital General de Massachusetts (Boston, MA, EUA), demostró que el aprendizaje profundo no supervisado basado en TC puede proporcionar un desempeño pronóstico significativamente mayor que las pruebas de laboratorio establecidas y los predictores de supervivencia cuantitativos y visuales basados en imágenes existentes. El modelo puede predecir, para cada paciente, el momento en que progresa la COVID-19 y, por lo tanto, el momento en que el paciente ingresa en una unidad de cuidados intensivos o cuando el paciente está enfermo, algo que otros modelos de predicción basados en imágenes no pueden hacer. La información de tiempo calculada por el modelo también permite la estratificación de los pacientes en grupos de bajo y alto riesgo por un margen más amplio de lo que es posible con otros predictores.

La evaluación clínica rápida y exacta de la progresión de la enfermedad y la mortalidad es vital para el tratamiento de los pacientes con COVID-19. Aunque se han propuesto varios predictores, se han limitado a evaluaciones subjetivas, esquemas semiautomatizados o enfoques de aprendizaje profundo supervisados. Tales predictores son subjetivos o requieren una laboriosa anotación de los casos de entrenamiento. En un estudio complementario, el equipo de investigación ya había demostrado que se podía utilizar la IA supervisada para predecir la supervivencia de los pacientes con COVID-19 a partir de sus imágenes de tomografía computarizada de tórax. Sin embargo, el nuevo modelo de IA sin supervisión abre nuevos caminos al evitar las limitaciones técnicas y los laboriosos esfuerzos de anotación de los predictores anteriores, porque el uso de una red de generación de adversarios hace posible entrenar un modelo completo de análisis de supervivencia de un extremo a otro directamente desde las imágenes. Aunque el estudio se limitó a pacientes con COVID-19, el equipo cree que el modelo también se puede generalizar a otras enfermedades.

“Nuestros resultados muestran que el desempeño de predicción del modelo de IA no supervisado fue significativamente mayor y el error de predicción significativamente menor que los de los predictores de referencia previamente establecidos”, dijo Hiroyuki Yoshida, PhD, director de Investigación de Imágenes 3D en el Hospital General de Massachusetts, quien dirigió el equipo de investigación. “El uso de IA no supervisada como parte integral del modelo de predicción de supervivencia hace posible realizar predicciones de pronóstico directamente a partir de las imágenes de TC originales de los pacientes con una precisión mayor que la que antes era posible en las imágenes cuantitativas”.

“Es una tecnología de IA mucho más precisa y avanzada”, explicó Yoshida. “Problemas como la COVID Larga, la variante Delta o la generalización del modelo a otras enfermedades manifestadas en imágenes médicas son aplicaciones prometedoras de este modelo de IA sin supervisión”.

Enlace relacionado:
Hospital General de Massachusetts

Miembro Oro
Hematology Analyzer
Medonic M32B
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Miembro Oro
Automated MALDI-TOF MS System
EXS 3000
Capillary Blood Collection Tube
IMPROMINI M3

Canales

Diagnóstico Molecular

ver canal
Imagen: el análisis de patrones específicos de fragmentación del ADNlc en muestras de orina puede diagnosticar y estadificar el cáncer de vejiga (Herranz et al., The Journal of Molecular Diagnostics, DOI: 10.1016/j.jmoldx.2025.08.010)

Sencilla prueba de orina revolucionará diagnóstico y tratamiento del cáncer de vejiga

El cáncer de vejiga es uno de los cánceres urológicos más comunes y mortales, y se caracteriza por una alta tasa de recurrencia. El diagnóstico y el seguimiento aún... Más

Hematología

ver canal
Imagen: una investigación ha relacionado la agregación plaquetaria en muestras de sangre de la mediana edad con los marcadores cerebrales tempranos de la enfermedad de Alzheimer (fotografía cortesía de Shutterstock)

Análisis sanguíneo de actividad plaquetaria en mediana edad podría identificar riesgo temprano de Alzheimer

La detección temprana de la enfermedad de Alzheimer sigue siendo una de las mayores necesidades insatisfechas en neurología, sobre todo porque los cambios biológicos que subyacen al... Más

Inmunología

ver canal
Imagen: el dispositivo de doble canal impreso en 3D separa firmas de proteínas y ARN para identificar de manera confiable la infección activa por VIH-1 (fotografía cortesía de Dipanjan Pan/Penn State)

Nueva prueba distingue falsos positivos inducidos por vacuna de infección activa por VIH

Desde que se identificó el VIH en 1983, más de 91 millones de personas han contraído el virus y más de 44 millones han fallecido por causas relacionadas. Hoy en día, casi 40 millones de personas en todo... Más

Patología

ver canal
Imagen: las condiciones de salud cotidianas pueden influir en los resultados de los análisis de sangre de Alzheimer (fotografía cortesía de Shutterstock)

Problemas de salud comunes pueden influir en nuevos análisis sanguíneos para enfermedad de Alzheimer

Las pruebas de sangre para la enfermedad de Alzheimer están transformando el diagnóstico al ofrecer una alternativa más sencilla a las punciones lumbares y las imágenes cerebrales.... Más
GLOBE SCIENTIFIC, LLC