LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Los rayos X combinados con la inteligencia artificial ofrecen una herramienta de diagnóstico rápido para detectar COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 01 Apr 2021
Ilustración
Ilustración
Los rayos-x podrían ser una herramienta de diagnóstico de vanguardia para pacientes con COVID-19 con la ayuda de inteligencia artificial (IA), según investigadores que enseñaron un programa de computadora, a través de varios métodos de aprendizaje automático, para detectar COVID-19 en rayos-x de tórax con una precisión de 95,6 a 98,5%.
Los hallazgos fueron hechos por investigadores de la Universidad de Fortaleza (Fortaleza - CE, Brasil), que anteriormente se enfocaban en detectar y clasificar patologías pulmonares, como fibrosis, enfisema y nódulos pulmonares, por medio de la imagenología. Los síntomas comunes sospechosos de infecciones de COVID-19 incluyen dificultad respiratoria, tos y en casos más agresivos, neumonía, todos visibles por medio de imagenología como exploraciones TC o rayos-x. Muchas instituciones médicas tienen tanto un número inadecuado de pruebas como tiempos largos de procesamiento, por lo tanto, el equipo de investigación se centró en mejorar una herramienta que está fácilmente disponible en cada hospital y que ya es usada con frecuencia en diagnosticar el COVID-19: los dispositivos de rayos-x. Además, las imágenes de rayos-x están disponibles en minutos, en comparación con los días requeridos por las pruebas diagnósticas de hisopado o saliva.
Sin embargo, los investigadores encontraron una falta de rayos-x disponible públicamente para entrenar su modelo IA para identificar automáticamente los pulmones de los pacientes con COVID-19. Tenían solo 194 rayos-x de COVID-19 y 194 rayos-x de personas sanas, mientras que generalmente toma miles de imágenes enseñar a fondo un modelo para detectar y clasificar un objetivo en particular. Para compensar, tomaron un modelo entrenado en una gran base de datos de otras imágenes de rayos-x y lo entrenaron para usar los mismos métodos para detectar los pulmones probablemente infectados con COVID-19. Utilizaron varios métodos de aprendizaje automáticos diferentes, dos de los cuales resultaron en una calificación de precisión de 95,6% y 98,5%, respectivamente. Los investigadores ahora planean continuar probando su método con bases de datos más grandes a medida que estén disponibles, con la meta final de desarrollar una plataforma en-línea gratuita para la clasificación de las imágenes médicas.
"Dado que los rayos-x son muy rápidos y económicos, pueden ayudar a clasificar a los pacientes en lugares donde el sistema de salud ha colapsado o en lugares que estén muy lejos de los centros médicos principales con acceso a tecnologías más complejas", dijo el autor corresponsal Victor Hugo C. de Albuquerque, un investigador en el Laboratorio de Procesamiento de Imágenes, Señales y Computación Aplicada y con la Universidad de Fortaleza. "Este enfoque para detectar y clasificar las imágenes médicas automáticamente, puede ayudar a los médicos en identificar, medir la severidad y clasificar la enfermedad".

Enlace relacionado:
Universidad de Fortaleza

Miembro Oro
PRUEBA DE VIRUS SINCITIAL RESPIRATORIO
OSOM® RSV Test
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Gel Cards
DG Gel Cards
Miembro Oro
SISTEMA DE RECOLECCIÓN Y TRANSPORTE
PurSafe Plus®

Canales

Diagnóstico Molecular

ver canal
Imagen: el análisis de patrones específicos de fragmentación del ADNlc en muestras de orina puede diagnosticar y estadificar el cáncer de vejiga (Herranz et al., The Journal of Molecular Diagnostics, DOI: 10.1016/j.jmoldx.2025.08.010)

Sencilla prueba de orina revolucionará diagnóstico y tratamiento del cáncer de vejiga

El cáncer de vejiga es uno de los cánceres urológicos más comunes y mortales, y se caracteriza por una alta tasa de recurrencia. El diagnóstico y el seguimiento aún... Más

Hematología

ver canal
Imagen: una investigación ha relacionado la agregación plaquetaria en muestras de sangre de la mediana edad con los marcadores cerebrales tempranos de la enfermedad de Alzheimer (fotografía cortesía de Shutterstock)

Análisis sanguíneo de actividad plaquetaria en mediana edad podría identificar riesgo temprano de Alzheimer

La detección temprana de la enfermedad de Alzheimer sigue siendo una de las mayores necesidades insatisfechas en neurología, sobre todo porque los cambios biológicos que subyacen al... Más

Inmunología

ver canal
Imagen: el dispositivo de doble canal impreso en 3D separa firmas de proteínas y ARN para identificar de manera confiable la infección activa por VIH-1 (fotografía cortesía de Dipanjan Pan/Penn State)

Nueva prueba distingue falsos positivos inducidos por vacuna de infección activa por VIH

Desde que se identificó el VIH en 1983, más de 91 millones de personas han contraído el virus y más de 44 millones han fallecido por causas relacionadas. Hoy en día, casi 40 millones de personas en todo... Más

Patología

ver canal
Imagen: las condiciones de salud cotidianas pueden influir en los resultados de los análisis de sangre de Alzheimer (fotografía cortesía de Shutterstock)

Problemas de salud comunes pueden influir en nuevos análisis sanguíneos para enfermedad de Alzheimer

Las pruebas de sangre para la enfermedad de Alzheimer están transformando el diagnóstico al ofrecer una alternativa más sencilla a las punciones lumbares y las imágenes cerebrales.... Más
GLOBE SCIENTIFIC, LLC