LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Algoritmo avanzado de aprendizaje automático predice con exactitud el riesgo de que la COVID-19 progrese a enfermedad severa o muerte

Por el equipo editorial de LabMedica en español
Actualizado el 18 Mar 2021
Ilustración
Ilustración
Un algoritmo avanzado de aprendizaje automático utiliza datos clínicos de “cabecera” que se obtienen fácilmente para predecir con exactitud el riesgo de un paciente de desarrollar COVID-19 grave o morir a causa de la enfermedad.

Investigadores de Johns Hopkins Medicine (JHM; Baltimore, MD, EUA), desarrollaron el sistema avanzado de aprendizaje automático que puede predecir con exactitud cómo se desarrollará la enfermedad de un paciente con COVID-19 y transmitir sus hallazgos al médico en una forma fácilmente comprensible. La nueva herramienta de pronóstico, conocida como el Predictor de riesgo adaptativo de COVID-19 severo (SCARP), puede ayudar a definir el riesgo de un día y siete días, de que un paciente hospitalizado con COVID-19 desarrolle una forma más grave de la enfermedad o muera por ella.

Los médicos a menudo aprenden a reconocer patrones en los casos de COVID-19 después de tratar a muchos pacientes que la padecen. Los sistemas de aprendizaje automático prometen mejorar esa capacidad, reconociendo patrones más complejos en un gran número de personas con COVID-19 y utilizando esa información para predecir el curso del caso de un paciente individual. Sin embargo, los médicos que han jurado “no hacer daño” pueden ser reacios a basar las estrategias de tratamiento y atención de sus pacientes más gravemente enfermos en algoritmos de aprendizaje automático difíciles de usar o de interpretar. SCARP solicita una cantidad mínima de información para brindar una predicción exacta, haciéndola rápida, fácil de usar y confiable para basar las decisiones de tratamiento y atención.

El cerebro de SCARP es un algoritmo predictivo llamado Random Forests for Survival, Longitudinal and Multivariate Data (RF-SLAM). A diferencia de los métodos de predicción clínica anteriores que basan la puntuación de riesgo de un paciente en su condición en el momento en que ingresa al hospital, RF-SLAM se adapta a la última información disponible del paciente y considera los cambios en esas mediciones a lo largo del tiempo. Para hacer posible este análisis dinámico, RF-SLAM divide la estancia hospitalaria de un paciente en ventanas de seis horas. Los datos recopilados durante esos períodos de tiempo son evaluados, a continuación, por los “bosques aleatorios” del algoritmo de aproximadamente 1.000 “árboles de decisión” que operan como un conjunto. Esto permite que SCARP brinde una predicción de un resultado más exacta que la que podría hacer cada árbol de decisión individual por sí solo.

Para demostrar la capacidad de SCARP para predecir casos graves de COVID-19 o muertes por la enfermedad, los investigadores utilizaron un registro clínico con datos sobre pacientes hospitalizados con COVID-19. La información disponible de los pacientes incluyó datos demográficos, otras afecciones médicas y factores de riesgo conductuales, junto con más de 100 variables a lo largo del tiempo, como signos vitales, recuentos sanguíneos, perfiles metabólicos, frecuencia respiratoria y la cantidad de oxígeno suplementario necesario. Entre 3.163 pacientes admitidos con COVID-19 moderada, 228 (7%) enfermaron gravemente o murieron en un período de 24 horas; 355 (11%) adicionales se enfermaron gravemente o murieron durante la primera semana. También se recopilaron datos sobre el número de personas que desarrollaron COVID-19 grave o murieron en cualquier día dentro de los 14 días posteriores a la admisión. En general, las predicciones de riesgo de un día de SCARP para la progresión a COVID-19 grave o la muerte fueron 89% exactas, mientras que las predicciones de riesgo de siete días para ambos resultados fueron 83% exactas. El equipo ahora planea más ensayos de SCARP para validar su desempeño a gran escala utilizando bases de datos nacionales de pacientes.

“SCARP fue diseñado para proporcionar a los médicos una herramienta predictiva, interactiva y adaptativa, que permite ingresar variables clínicas en tiempo real al lado de la cama del paciente”, dijo Matthew Robinson, MD, profesor asistente de medicina en la Facultad de Medicina de la Universidad Johns Hopkins y autor principal del artículo. “Al generar una predicción clínica personalizada del desarrollo de una enfermedad grave o muerte en el día y la semana siguientes, y en cualquier momento de las dos primeras semanas de hospitalización, SCARP permitirá a un equipo médico tomar decisiones más informadas sobre la mejor manera de tratar a cada paciente con COVID-19”.

“Nuestra demostración exitosa muestra que SCARP tiene el potencial de ser una calculadora de riesgo, fácil de usar, altamente exacta y clínicamente significativa, para pacientes hospitalizados con COVID-19”, agregó Robinson. “Tener una comprensión sólida del riesgo en tiempo real de un paciente de progresar a una enfermedad grave o la muerte dentro de las próximas 24 horas y la próxima semana podría ayudar a los proveedores de atención médica a tomar decisiones más informadas y tomar decisiones de tratamiento para sus pacientes con COVID-19 a medida que se enferman más”.

Enlace relacionado:
Johns Hopkins Medicine

Miembro Oro
ENSAYO INMUNOCROMATOGRÁFICO
CRYPTO Cassette
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Human Estradiol Assay
Human Estradiol CLIA Kit

Canales

Diagnóstico Molecular

ver canal
Imagen: el análisis de patrones específicos de fragmentación del ADNlc en muestras de orina puede diagnosticar y estadificar el cáncer de vejiga (Herranz et al., The Journal of Molecular Diagnostics, DOI: 10.1016/j.jmoldx.2025.08.010)

Sencilla prueba de orina revolucionará diagnóstico y tratamiento del cáncer de vejiga

El cáncer de vejiga es uno de los cánceres urológicos más comunes y mortales, y se caracteriza por una alta tasa de recurrencia. El diagnóstico y el seguimiento aún... Más

Hematología

ver canal
Imagen: una investigación ha relacionado la agregación plaquetaria en muestras de sangre de la mediana edad con los marcadores cerebrales tempranos de la enfermedad de Alzheimer (fotografía cortesía de Shutterstock)

Análisis sanguíneo de actividad plaquetaria en mediana edad podría identificar riesgo temprano de Alzheimer

La detección temprana de la enfermedad de Alzheimer sigue siendo una de las mayores necesidades insatisfechas en neurología, sobre todo porque los cambios biológicos que subyacen al... Más

Inmunología

ver canal
Imagen: el dispositivo de doble canal impreso en 3D separa firmas de proteínas y ARN para identificar de manera confiable la infección activa por VIH-1 (fotografía cortesía de Dipanjan Pan/Penn State)

Nueva prueba distingue falsos positivos inducidos por vacuna de infección activa por VIH

Desde que se identificó el VIH en 1983, más de 91 millones de personas han contraído el virus y más de 44 millones han fallecido por causas relacionadas. Hoy en día, casi 40 millones de personas en todo... Más

Patología

ver canal
Imagen: las condiciones de salud cotidianas pueden influir en los resultados de los análisis de sangre de Alzheimer (fotografía cortesía de Shutterstock)

Problemas de salud comunes pueden influir en nuevos análisis sanguíneos para enfermedad de Alzheimer

Las pruebas de sangre para la enfermedad de Alzheimer están transformando el diagnóstico al ofrecer una alternativa más sencilla a las punciones lumbares y las imágenes cerebrales.... Más
GLOBE SCIENTIFIC, LLC