Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Modelo de aprendizaje automático descubre la predisposición genética a la COVID-19 severa

Por el equipo editorial de LabMedica en español
Actualizado el 25 Feb 2021
Imagen: La puntuación de riesgo sugerida por los investigadores (eje vertical) es considerablemente más alta en el grupo de pacientes que padecen COVID-19 grave (muestra de pacientes de Moscú) (Fotografía cortesía de la Universidad HSE)
Imagen: La puntuación de riesgo sugerida por los investigadores (eje vertical) es considerablemente más alta en el grupo de pacientes que padecen COVID-19 grave (muestra de pacientes de Moscú) (Fotografía cortesía de la Universidad HSE)
Investigadores de la Universidad HSE (Moscú, Rusia) se convirtieron en los primeros en el mundo en descubrir la predisposición genética a la COVID-19 grave, utilizando un modelo de aprendizaje automático.

La inmunidad de las células T es uno de los mecanismos clave que utiliza el cuerpo humano para combatir las infecciones por virus. La base de estadificación para el desarrollo de la inmunidad celular es la presentación de péptidos de virus a la superficie de las células infectadas. A esto le sigue la activación de los linfocitos T, que comienzan a matar las células infectadas.

La capacidad de presentar con éxito péptidos de virus está determinada en gran medida por la genética. En las células humanas, las moléculas de antígeno leucocitario humano de clase I (HLA-I) son responsables de esta presentación. El conjunto de seis de estas moléculas es único en cada ser humano y se hereda de los padres del individuo. En términos simples, si el conjunto de alelos detecta bien el virus, entonces las células inmunes detectarán y destruirán las células infectadas rápidamente; si una persona tiene un equipo malo para tal detección, es más probable que se observe un caso más grave de enfermedad.

Los investigadores estudiaron la interconexión entre el genotipo HLA-I y la gravedad de la COVID-19. Usando el aprendizaje automático, construyeron un modelo que proporciona una evaluación integral del posible poder de la respuesta inmune de las células T a la COVID-19: si el conjunto de alelos HLA-I permite la presentación efectiva de los péptidos del virus del SARS-CoV-2, esos individuos recibían una puntuación de riesgo baja, mientras que las personas con menor capacidad de presentación recibieron puntuaciones de riesgo más altas (en el rango de 0 a 100). Para validar el modelo, se analizaron los genotipos de más de 100 pacientes que habían padecido COVID-19 y más de 400 personas sanas (el grupo de control). Resultó que la puntuación de riesgo modelada es muy eficaz para predecir la gravedad de la COVID-19.

Además de analizar la población de Moscú, los investigadores utilizaron su modelo en una muestra de pacientes de Madrid, España. La alta precisión de la predicción también se confirmó en esta muestra independiente: la puntuación de riesgo de los pacientes que padecían COVID-19 grave fue significativamente más alta que en los pacientes con casos moderados y leves de la enfermedad.

“Además de las correlaciones descubiertas entre el genotipo y la gravedad de la COVID-19, el método sugerido también ayuda a evaluar cómo una determinada mutación de COVID-19 puede afectar el desarrollo de la inmunidad de las células T al virus. Por ejemplo, podremos detectar grupos de pacientes para quienes la infección con nuevas cepas de SARS-CoV-2 puede conducir a formas más graves de la enfermedad”, dijo Alexander Tonevitsky, investigador de la Facultad de Biología y Biotecnología de la HSE.

Enlace relacionado:
Universidad HSE

Miembro Oro
Blood Gas Analyzer
Stat Profile pHOx
KIT DE PRUEBA POC PARA H.PYLORI
Hepy Urease Test
Pipette
Accumax Smart Series
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Canales

Inmunología

ver canal
Imagen: las células tumorales circulantes aisladas de muestras de sangre podrían ayudar a guiar las decisiones sobre inmunoterapia (fotografía cortesía de Shutterstock)

Análisis de sangre identifica pacientes con cáncer pulmonar beneficiarios de fármaco de inmunoterapia

El cáncer de pulmón de células pequeñas (CPCP) es una enfermedad agresiva con opciones de tratamiento limitadas, e incluso las inmunoterapias recientemente aprobadas no benefician... Más

Microbiología

ver canal
Imagen: la plataforma de diagnóstico de precisión dSHERLOCK permite la evaluación cuantitativa de infecciones por hongos en 20 minutos (fotografía cortesía del Instituto Wyss de la Universidad de Harvard)

Plataforma de IA permite detección rápida de patógenos de C. auris resistentes a fármacos

Las infecciones causadas por la levadura patógena Candida auris representan una amenaza significativa para los pacientes hospitalizados, en particular para aquellos con sistemas inmunitarios debilitados... Más

Industria

ver canal
Imagen: la plataforma molecular de punto de atención LIAISON NES (fotografía cortesía de Diasorin)

Diasorin y Fisher Scientific firman acuerdo de distribución en EUA para plataforma POC molecular

Diasorin (Saluggia, Italia) ha firmado un acuerdo de distribución exclusivo con Fisher Scientific, parte de Thermo Fisher Scientific (Waltham, MA, EUA), para la plataforma molecular de punto de... Más