Modelo de aprendizaje automático descubre la predisposición genética a la COVID-19 severa
Por el equipo editorial de LabMedica en español Actualizado el 25 Feb 2021 |

Imagen: La puntuación de riesgo sugerida por los investigadores (eje vertical) es considerablemente más alta en el grupo de pacientes que padecen COVID-19 grave (muestra de pacientes de Moscú) (Fotografía cortesía de la Universidad HSE)
Investigadores de la Universidad HSE (Moscú, Rusia) se convirtieron en los primeros en el mundo en descubrir la predisposición genética a la COVID-19 grave, utilizando un modelo de aprendizaje automático.
La inmunidad de las células T es uno de los mecanismos clave que utiliza el cuerpo humano para combatir las infecciones por virus. La base de estadificación para el desarrollo de la inmunidad celular es la presentación de péptidos de virus a la superficie de las células infectadas. A esto le sigue la activación de los linfocitos T, que comienzan a matar las células infectadas.
La capacidad de presentar con éxito péptidos de virus está determinada en gran medida por la genética. En las células humanas, las moléculas de antígeno leucocitario humano de clase I (HLA-I) son responsables de esta presentación. El conjunto de seis de estas moléculas es único en cada ser humano y se hereda de los padres del individuo. En términos simples, si el conjunto de alelos detecta bien el virus, entonces las células inmunes detectarán y destruirán las células infectadas rápidamente; si una persona tiene un equipo malo para tal detección, es más probable que se observe un caso más grave de enfermedad.
Los investigadores estudiaron la interconexión entre el genotipo HLA-I y la gravedad de la COVID-19. Usando el aprendizaje automático, construyeron un modelo que proporciona una evaluación integral del posible poder de la respuesta inmune de las células T a la COVID-19: si el conjunto de alelos HLA-I permite la presentación efectiva de los péptidos del virus del SARS-CoV-2, esos individuos recibían una puntuación de riesgo baja, mientras que las personas con menor capacidad de presentación recibieron puntuaciones de riesgo más altas (en el rango de 0 a 100). Para validar el modelo, se analizaron los genotipos de más de 100 pacientes que habían padecido COVID-19 y más de 400 personas sanas (el grupo de control). Resultó que la puntuación de riesgo modelada es muy eficaz para predecir la gravedad de la COVID-19.
Además de analizar la población de Moscú, los investigadores utilizaron su modelo en una muestra de pacientes de Madrid, España. La alta precisión de la predicción también se confirmó en esta muestra independiente: la puntuación de riesgo de los pacientes que padecían COVID-19 grave fue significativamente más alta que en los pacientes con casos moderados y leves de la enfermedad.
“Además de las correlaciones descubiertas entre el genotipo y la gravedad de la COVID-19, el método sugerido también ayuda a evaluar cómo una determinada mutación de COVID-19 puede afectar el desarrollo de la inmunidad de las células T al virus. Por ejemplo, podremos detectar grupos de pacientes para quienes la infección con nuevas cepas de SARS-CoV-2 puede conducir a formas más graves de la enfermedad”, dijo Alexander Tonevitsky, investigador de la Facultad de Biología y Biotecnología de la HSE.
Enlace relacionado:
Universidad HSE
La inmunidad de las células T es uno de los mecanismos clave que utiliza el cuerpo humano para combatir las infecciones por virus. La base de estadificación para el desarrollo de la inmunidad celular es la presentación de péptidos de virus a la superficie de las células infectadas. A esto le sigue la activación de los linfocitos T, que comienzan a matar las células infectadas.
La capacidad de presentar con éxito péptidos de virus está determinada en gran medida por la genética. En las células humanas, las moléculas de antígeno leucocitario humano de clase I (HLA-I) son responsables de esta presentación. El conjunto de seis de estas moléculas es único en cada ser humano y se hereda de los padres del individuo. En términos simples, si el conjunto de alelos detecta bien el virus, entonces las células inmunes detectarán y destruirán las células infectadas rápidamente; si una persona tiene un equipo malo para tal detección, es más probable que se observe un caso más grave de enfermedad.
Los investigadores estudiaron la interconexión entre el genotipo HLA-I y la gravedad de la COVID-19. Usando el aprendizaje automático, construyeron un modelo que proporciona una evaluación integral del posible poder de la respuesta inmune de las células T a la COVID-19: si el conjunto de alelos HLA-I permite la presentación efectiva de los péptidos del virus del SARS-CoV-2, esos individuos recibían una puntuación de riesgo baja, mientras que las personas con menor capacidad de presentación recibieron puntuaciones de riesgo más altas (en el rango de 0 a 100). Para validar el modelo, se analizaron los genotipos de más de 100 pacientes que habían padecido COVID-19 y más de 400 personas sanas (el grupo de control). Resultó que la puntuación de riesgo modelada es muy eficaz para predecir la gravedad de la COVID-19.
Además de analizar la población de Moscú, los investigadores utilizaron su modelo en una muestra de pacientes de Madrid, España. La alta precisión de la predicción también se confirmó en esta muestra independiente: la puntuación de riesgo de los pacientes que padecían COVID-19 grave fue significativamente más alta que en los pacientes con casos moderados y leves de la enfermedad.
“Además de las correlaciones descubiertas entre el genotipo y la gravedad de la COVID-19, el método sugerido también ayuda a evaluar cómo una determinada mutación de COVID-19 puede afectar el desarrollo de la inmunidad de las células T al virus. Por ejemplo, podremos detectar grupos de pacientes para quienes la infección con nuevas cepas de SARS-CoV-2 puede conducir a formas más graves de la enfermedad”, dijo Alexander Tonevitsky, investigador de la Facultad de Biología y Biotecnología de la HSE.
Enlace relacionado:
Universidad HSE
Últimas COVID-19 noticias
- Inmunosensor nuevo allana el camino para pruebas rápidas POC para COVID-19 y enfermedades infecciosas emergentes
- Encuentran etiologías de COVID prolongada en muestras de sangre con infección aguda
- Dispositivo novedoso detecta anticuerpos contra la COVID-19 en cinco minutos
- Prueba para COVID-19 mediante CRISPR detecta SARS-CoV-2 en 30 minutos usando tijeras genéticas
- Asocian disbiosis del microbioma intestinal con la COVID-19
- Validan prueba rápida novedosa de antígeno para el SARS-CoV-2 con respecto a su exactitud diagnóstica
- Prueba nueva COVID + Influenza + VSR ayudará a estar preparados para la ‘tripledemia’
- IA elimina las conjeturas de las pruebas de flujo lateral
- Prueba de antígeno del SARS-CoV-2 más rápida, jamás diseñada, permite realizar pruebas de COVID-19 no invasivas en cualquier entorno
- Pruebas rápidas de antígeno detectan las variantes ómicron, delta del SARS-CoV-2
- Prueba en sangre realizada durante la infección inicial predice el riesgo de COVID prolongada
- Investigadores afirman que hay que crear “reservistas” de laboratorio para responder más rápidamente a la próxima pandemia
- Estudio encuentra que los profesionales sanitarios mostraron mayor interés en tecnologías POC durante la pandemia
- Plataforma de análisis de bajo costo para la COVID-19 combina sensibilidad de la PCR y velocidad de pruebas de antígeno
- Prueba de sangre por punción digital identifica inmunidad a la COVID-19
- Kit de prueba rápida determina inmunidad contra la COVID-19 y sus variantes
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más