Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Se evalúa de manera automática la gemación del carcinoma colorrectal

Por el equipo editorial de LabMedica en español
Actualizado el 17 Sep 2018
Print article
Imagen: El M8 sirve como un microscopio y escáner dual con todas las características accesibles a través de una computadora con pantalla táctil, lo que lo convierte en un microscopio verdaderamente digital (Fotografía cortesía de PreciPoint).
Imagen: El M8 sirve como un microscopio y escáner dual con todas las características accesibles a través de una computadora con pantalla táctil, lo que lo convierte en un microscopio verdaderamente digital (Fotografía cortesía de PreciPoint).
En varios estudios independientes, se ha demostrado que la gemación tumoral, es decir, un desprendimiento de las células tumorales en el frente de invasión del carcinoma colorrectal (CCR) en células individuales o conglomerados, se correlaciona con un resultado clínico peor.

Sin embargo, la aplicación de la gemación tumoral mediante evaluación manual en la patología de rutina se ve obstaculizada debido al uso de varios sistemas de evaluación ligeramente diferentes, un proceso de recuento manual y una alta variabilidad interobservador.

Los patólogos liderados por sus colegas en el Centro Médico Universitario de Mannheim (Mannheim, Alemania) recuperaron 20 muestras de tejido de láminas completas de tejido tumoral incrustado en parafina y microarrays de tejido (TMA) incluidos en parafina obtenidos de tejido tumoral de la Universidad Médica de Graz (Graz, Austria). Estos casos pertenecen a una cohorte de pacientes previamente publicada de 381 pacientes (166 hombres, 215 mujeres, mediana de edad de 70,1 años).

El equipo combinó métodos clásicos de segmentación (como operaciones morfológicas) y técnicas de aprendizaje automático (k-means y agrupamiento jerárquico, redes neuronales convolucionales) para detectar confiablemente brotes tumorales en muestras de carcinoma colorrectal coloreadas inmunohistoquímicamente para la pancitoqueratina. Como una posible aplicación, la ensayaron en imágenes de láminas completas, así como en microarrays de tejidos (TMA) de la cohorte de CCR clínicamente bien clasificada. Los cortes secuenciales se digitalizaron como imágenes de láminas completas (WSI) utilizando un microscopio digital y un escáner M8 (PreciPoint GmbH, Freising, Alemania).

Los científicos informaron que su herramienta de evaluación automática de gemación tumoral detectó el número absoluto de brotes tumorales por imagen con una muy buena correlación con la clasificación obtenida por segmentación manual. Además, a través de la evaluación automática de imágenes de las láminas completas de 20 pacientes con CCR, descubrieron que ni el número detectado de gemaciones tumorales en el frente de invasión ni el número en zonas activas se asociaron con el estado ganglionar. Sin embargo, el número de grupos espaciales de brotes tumorales (puntos calientes en gemación) se correlacionó significativamente con el estado ganglionar. Las TMA no fueron factibles para la evaluación de la gemación tumoral, ya que la relación espacial de las gemas tumorales (especialmente las zonas activas) no estaban conservadas.

Los autores concluyeron que, sobre la base de una combinación de procesamiento de imágenes y aprendizaje automático, descubrieron que no es el número absoluto de formaciones tumorales clasificadas como “brotes tumorales” dentro de la región infiltrante, sino su disposición espacial en puntos críticos importantes y especialmente el número de tales puntos de acceso los que son clínicamente significativos. En consecuencia, el consejo para el patólogo quirúrgico es centrarse más en la distribución espacial (como el tipo de diagnóstico de patrón), en lugar de en el número absoluto, de los brotes tumorales. El estudio fue publicado el 28 de agosto de 2018 en la revista Diagnostic Pathology.

Enlace relacionado:
Centro Médico Universitario de Mannheim
Universidad Médica de Graz
PreciPoint GmbH



New
Miembro Oro
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Coagulation Analyzer
CS-2400

Print article

Canales

Inmunología

ver canal
Imagen: la nueva herramienta mide la inflamación de la sangre como marcador para los resultados desfavorables de la terapia CAR T (foto cortesía de City of Hope)

Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma

La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... Más

Microbiología

ver canal
Imagen: representación esquemática que ilustra los hallazgos clave del estudio (foto cortesía de la UNIST)

Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas

La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... Más
Sekisui Diagnostics UK Ltd.