Tecnología basada en IA identifica causas genéticas de enfermedades serias
Por el equipo editorial de LabMedica en español Actualizado el 27 Oct 2021 |

Imagen: Diagrama esquemático del flujo de trabajo de Fabric GEM que proporciona resultados rápidos y exactos para cualquier análisis clínico de NGS (Fotografía cortesía de Fabric Genomics)
La interpretación clínica de las variantes genéticas en el contexto del fenotipo del paciente se ha convertido en el mayor componente del gasto de tiempo y costo para el diagnóstico, basado en el genoma, de las enfermedades genéticas raras.
El proceso de interpretación del genoma consiste en un filtrado de variantes iterativo, junto con una revisión basada en la evidencia de las variantes candidatas que causan enfermedades. La inteligencia artificial (IA) promete simplificar y acelerar en gran medida la interpretación del genoma mediante la integración de métodos predictivos con el creciente conocimiento de las enfermedades genéticas.
Un equipo internacional de científicos de medicina genómica que colabora con los de la Facultad de Medicina de la Universidad de Utah (Salt Lake City, UT, EUA), evaluó el desempeño diagnóstico de Fabric GEM (Fabric Genomics Inc., Oakland, CA, EUA), una nueva herramienta de apoyo a la toma de decisiones clínicas basada en IA para acelerar la interpretación del genoma. Compararon GEM en una cohorte retrospectiva de 119 probandos, en su mayoría bebés de la UCIN, diagnosticados con enfermedades genéticas raras, que recibieron secuenciación del genoma completo o del exoma completo (WGS, WES). Replicaron sus análisis en una cohorte separada de 60 casos recolectados de cinco centros médicos académicos. A modo de comparación, también analizaron estos casos con herramientas de priorización de variantes de última generación.
Los investigadores informaron que GEM clasificó más del 90% de los genes causales entre el mejor o el segundo candidato y priorizó la revisión de una mediana de tres genes candidatos por caso, utilizando descripciones de fenotipo curadas manualmente o derivadas del procesamiento clínico del lenguaje natural (CNLP). La clasificación de tríos y dúos no cambió cuando se analizó como uno solo. En 17 de 20 casos con variantes estructurales de diagnóstico (SV), GEM identificó las SV causales como las principales candidatas y en 19/20 entre las cinco principales, independientemente de si las llamadas de SV fueron proporcionadas o inferidas ab initio por GEM utilizando su algoritmo de detección de SV interno propio. GEM mostró un desempeño similar en ausencia de genotipos parentales. El análisis de 14 casos no resueltos anteriormente dio como resultado un hallazgo novedoso para un caso, los candidatos finalmente no avanzaron tras la revisión manual de tres casos y ningún hallazgo nuevo para 10 casos.
Mark Yandell, PhD, profesor de genética humana y coautor correspondiente del estudio, dijo: “Los niños críticamente enfermos acumulan rápidamente muchas páginas de notas clínicas. La necesidad de que los médicos revisen y resuman manualmente el contenido de las notas como parte del proceso de diagnóstico es una pérdida de tiempo enorme. La capacidad de la herramienta de Clinithink para convertir automáticamente el contenido de estas notas en segundos para que las consuma GEM es fundamental para la velocidad y la escalabilidad”. Clinithink (Alpharetta, GA, EUA) es una compañía de tecnología construida alrededor de CLiX, la primera IA de atención médica del mundo capaz de comprender verdaderamente notas médicas no estructuradas.
Los autores concluyeron que GEM permitió la interpretación del diagnóstico que incluye todos los tipos de variantes mediante la nominación automatizada de una lista muy corta de genes y trastornos candidatos para la revisión final y el informe. En combinación con la fenotipificación profunda por CNLP, GEM permite una automatización sustancial del diagnóstico de enfermedades genéticas, lo que potencialmente reduce los costos y acelera la revisión de casos. El estudio fue publicado el 14 de octubre de 2021 en la revista Genomic Medicine.
Enlace relacionado:
Universidad de Utah
Fabric Genomics Inc
Clinithink
El proceso de interpretación del genoma consiste en un filtrado de variantes iterativo, junto con una revisión basada en la evidencia de las variantes candidatas que causan enfermedades. La inteligencia artificial (IA) promete simplificar y acelerar en gran medida la interpretación del genoma mediante la integración de métodos predictivos con el creciente conocimiento de las enfermedades genéticas.
Un equipo internacional de científicos de medicina genómica que colabora con los de la Facultad de Medicina de la Universidad de Utah (Salt Lake City, UT, EUA), evaluó el desempeño diagnóstico de Fabric GEM (Fabric Genomics Inc., Oakland, CA, EUA), una nueva herramienta de apoyo a la toma de decisiones clínicas basada en IA para acelerar la interpretación del genoma. Compararon GEM en una cohorte retrospectiva de 119 probandos, en su mayoría bebés de la UCIN, diagnosticados con enfermedades genéticas raras, que recibieron secuenciación del genoma completo o del exoma completo (WGS, WES). Replicaron sus análisis en una cohorte separada de 60 casos recolectados de cinco centros médicos académicos. A modo de comparación, también analizaron estos casos con herramientas de priorización de variantes de última generación.
Los investigadores informaron que GEM clasificó más del 90% de los genes causales entre el mejor o el segundo candidato y priorizó la revisión de una mediana de tres genes candidatos por caso, utilizando descripciones de fenotipo curadas manualmente o derivadas del procesamiento clínico del lenguaje natural (CNLP). La clasificación de tríos y dúos no cambió cuando se analizó como uno solo. En 17 de 20 casos con variantes estructurales de diagnóstico (SV), GEM identificó las SV causales como las principales candidatas y en 19/20 entre las cinco principales, independientemente de si las llamadas de SV fueron proporcionadas o inferidas ab initio por GEM utilizando su algoritmo de detección de SV interno propio. GEM mostró un desempeño similar en ausencia de genotipos parentales. El análisis de 14 casos no resueltos anteriormente dio como resultado un hallazgo novedoso para un caso, los candidatos finalmente no avanzaron tras la revisión manual de tres casos y ningún hallazgo nuevo para 10 casos.
Mark Yandell, PhD, profesor de genética humana y coautor correspondiente del estudio, dijo: “Los niños críticamente enfermos acumulan rápidamente muchas páginas de notas clínicas. La necesidad de que los médicos revisen y resuman manualmente el contenido de las notas como parte del proceso de diagnóstico es una pérdida de tiempo enorme. La capacidad de la herramienta de Clinithink para convertir automáticamente el contenido de estas notas en segundos para que las consuma GEM es fundamental para la velocidad y la escalabilidad”. Clinithink (Alpharetta, GA, EUA) es una compañía de tecnología construida alrededor de CLiX, la primera IA de atención médica del mundo capaz de comprender verdaderamente notas médicas no estructuradas.
Los autores concluyeron que GEM permitió la interpretación del diagnóstico que incluye todos los tipos de variantes mediante la nominación automatizada de una lista muy corta de genes y trastornos candidatos para la revisión final y el informe. En combinación con la fenotipificación profunda por CNLP, GEM permite una automatización sustancial del diagnóstico de enfermedades genéticas, lo que potencialmente reduce los costos y acelera la revisión de casos. El estudio fue publicado el 14 de octubre de 2021 en la revista Genomic Medicine.
Enlace relacionado:
Universidad de Utah
Fabric Genomics Inc
Clinithink
Últimas Diagnóstico Molecular noticias
- Prueba de calprotectina predice riesgo de enfermedad cardíaca aterosclerótica
- Prueba de sangre económica permite detección temprana del Alzheimer
- Plataforma de diagnóstico POC combina inmunoensayo y pruebas moleculares
- Prueba innovadora evalúa con precisión gravedad de fibrosis hepática en solo 18 minutos
- Único análisis de sangre podría detectar distintos tipos de cáncer en etapas tempranas
- Prueba de hisopado oral POC para aumenta posibilidades de embarazo en la FIV
- Prueba de ADN microbiano libre de células identifica patógenos de neumonía y otras infecciones pulmonares
- Método sin biopsia transforma diagnóstico de enfermedad celíaca en adultos
- Innovadora prueba de diagnóstico molecular señala con precisión principal causa genética de EPOC
- Prueba diagnóstica de sangre detecta espondiloartritis axial
- Nueva etiqueta molecular desarrolla pruebas de tuberculosis más sencillas y rápidas
- Descubrimiento de biomarcador abre camino para que análisis de sangre detecten y traten osteoartritis
- Prueba de biopsia líquida detecta recurrencia en pacientes con CCR antes de las imágenes
- Prueba ultrarrápida de líquido sinovial diagnostica osteoartritis y artritis reumatoide en 10 minutos
- Herramienta genética predice supervivencia de pacientes con cáncer de páncreas
- Prueba de orina diagnostica cáncer de próstata inicial
Canales
Química Clínica
ver canal
Análisis de sangre con IA detecta cáncer de ovario
El cáncer de ovario se ubica como la quinta causa principal de muerte por cáncer en mujeres, debido principalmente a diagnósticos en etapas tardías. Si bien más del 90... Más
Ensayo automatizado y descentralizado de NGS de ADNlc identifica alteraciones en tumores sólidos avanzados
Los análisis actuales de ADN libre circulante (ADNlc) suelen estar centralizados, lo que requiere un manejo y transporte especializados de las muestras. La introducción de un sistema de secuenciación flexible... MásHematología
ver canal
Primera prueba de monitorización de heparina POC proporciona resultados rápidos
La dosificación de heparina requiere un manejo cuidadoso para evitar complicaciones hemorrágicas y de coagulación. En situaciones de alto riesgo, como la oxigenación por membrana... Más
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Nuevo análisis de sangre detecta hasta cinco enfermedades infecciosas en punto de atención
Los investigadores han desarrollado un prototipo de ensayo de flujo continuo capaz de detectar hasta cinco infecciones diferentes, cuyos resultados pueden analizarse y transmitirse rápidamente mediante... Más
Prueba molecular de heces muestra potencial para diagnosticar tuberculosis en adultos con VIH
La tuberculosis (TB), causada por la bacteria Mycobacterium tuberculosis, provocó 1,25 millones de muertes en 2023, de las cuales el 13 % se produjeron en personas con VIH. El principal método... MásPatología
ver canal
Microscopio con IA detecta coágulos de sangre mortales antes de reproducirse
Las plaquetas son pequeñas células sanguíneas que actúan como agentes de emergencia en el cuerpo, acudiendo rápidamente a las zonas lesionadas para ayudar a detener el... Más
Combinación de técnicas de laboratorio proporciona conocimientos más profundos sobre tumores cerebrales mortales
El glioblastoma (GBM) es un cáncer cerebral primario altamente agresivo que actualmente cuenta con tratamientos efectivos limitados. Las biopsias estereotácticas con aguja se emplean comúnmente para el... MásTecnología
ver canal
Algoritmos predictivos avanzados identifican pacientes con cáncer no diagnosticado
Dos algoritmos predictivos avanzados recientemente desarrollados aprovechan el estado de salud de una persona y los resultados de análisis de sangre básicos para predecir con precisión... Más
Algoritmo de firma de luz permite diagnósticos médicos más rápidos y precisos
Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... MásIndustria
ver canal
Qiagen adquiere Genoox, empresa de software de análisis NGS
QIAGEN (Venlo, Países Bajos) ha firmado un acuerdo definitivo para adquirir Genoox (Tel Aviv, Israel), un proveedor de software impulsado por inteligencia artificial (IA) que permite a los laboratorios... Más