Evalúan el uso de receptores de células T asociados al cáncer para la detección de tumores malignos
Por el equipo editorial de LabMedica en español Actualizado el 31 Aug 2020 |

Imagen: Predicción de novo de receptores de células T asociados al cáncer para la detección no invasiva del cáncer (Fotografía cortesía de UT Southwestern Medical Center).
Un objetivo clave en oncología es el diagnóstico temprano del cáncer, pues es cuando es más tratable. A pesar de décadas de progreso, el diagnóstico temprano de los pacientes asintomáticos se mantiene como un desafío importante. La mayoría de los métodos para esto implican la detección de células cancerosas, pero un enfoque diferente, centrado en la respuesta inmunitaria del cuerpo.
El sistema inmunológico adaptativo reconoce los antígenos tumorales en una etapa temprana para erradicar las células cancerosas. Este proceso se acompaña de la proliferación sistémica de los linfocitos T específicos del antígeno tumoral. Si bien la detección de cánceres asintomáticos en etapa temprana es un desafío debido al tamaño pequeño del tumor y las alteraciones somáticas limitadas, el seguimiento de los cambios en el repertorio de células T periféricas puede proporcionar una solución atractiva para el diagnóstico del cáncer.
Los científicos médicos del Centro Médico de la UT Southwestern (Dallas, TX, EUA), desarrollaron un método de aprendizaje profundo, llamado DeepCAT, para permitir la predicción de novo de los receptores de células T asociadas al cáncer (TCR). Ellos validaron DeepCAT usando TCR específicos de cáncer o no cancerosos, obtenidos de múltiples estudios de clasificación de multímeros del complejo principal de histocompatibilidad I (MHC-I) y demostraron su poder de predicción para los TCR específicos de antígenos del cáncer. DeepCAT se utiliza aplicando un método computacional para detectar secuencias de CDR3 de células T que se infiltran en el tumor a partir de datos de secuenciación de ARN de miles de muestras del Atlas del Genoma del Cáncer.
El equipo aplicó DeepCAT para diferenciar a más de 250 pacientes con cáncer de más de 600 individuos sanos utilizando secuencias de TCR en sangre y observó una alta exactitud en la predicción. DeepCAT también pudo identificar los TCR del cáncer (caTCR) en muestras de sangre de pacientes con cáncer de riñón, ovario, páncreas o pulmón en estadio temprano. Los autores afirman que el método tiene ciertas limitaciones, incluida la incapacidad de determinar el tejido de origen del cáncer, y señalan que las condiciones inflamatorias podrían afectar el desempeño de DeepCAT.
Los autores concluyeron que la puntuación de cáncer no pretende reemplazar los métodos de diagnóstico actuales en este momento. Más bien, se deben realizar esfuerzos futuros para explorar si el uso combinado de la puntuación del cáncer con las modalidades de detección existentes puede mejorar la exactitud del diagnóstico en los pacientes. Este trabajo prepara el escenario para el uso del repertorio de TCR de sangre periférica para la detección no invasiva del cáncer. El estudio fue publicado el 19 de agosto de 2020 en la revista Science Translational Medicine.
Enlace relacionado:
Centro Médico de la UT Southwestern
El sistema inmunológico adaptativo reconoce los antígenos tumorales en una etapa temprana para erradicar las células cancerosas. Este proceso se acompaña de la proliferación sistémica de los linfocitos T específicos del antígeno tumoral. Si bien la detección de cánceres asintomáticos en etapa temprana es un desafío debido al tamaño pequeño del tumor y las alteraciones somáticas limitadas, el seguimiento de los cambios en el repertorio de células T periféricas puede proporcionar una solución atractiva para el diagnóstico del cáncer.
Los científicos médicos del Centro Médico de la UT Southwestern (Dallas, TX, EUA), desarrollaron un método de aprendizaje profundo, llamado DeepCAT, para permitir la predicción de novo de los receptores de células T asociadas al cáncer (TCR). Ellos validaron DeepCAT usando TCR específicos de cáncer o no cancerosos, obtenidos de múltiples estudios de clasificación de multímeros del complejo principal de histocompatibilidad I (MHC-I) y demostraron su poder de predicción para los TCR específicos de antígenos del cáncer. DeepCAT se utiliza aplicando un método computacional para detectar secuencias de CDR3 de células T que se infiltran en el tumor a partir de datos de secuenciación de ARN de miles de muestras del Atlas del Genoma del Cáncer.
El equipo aplicó DeepCAT para diferenciar a más de 250 pacientes con cáncer de más de 600 individuos sanos utilizando secuencias de TCR en sangre y observó una alta exactitud en la predicción. DeepCAT también pudo identificar los TCR del cáncer (caTCR) en muestras de sangre de pacientes con cáncer de riñón, ovario, páncreas o pulmón en estadio temprano. Los autores afirman que el método tiene ciertas limitaciones, incluida la incapacidad de determinar el tejido de origen del cáncer, y señalan que las condiciones inflamatorias podrían afectar el desempeño de DeepCAT.
Los autores concluyeron que la puntuación de cáncer no pretende reemplazar los métodos de diagnóstico actuales en este momento. Más bien, se deben realizar esfuerzos futuros para explorar si el uso combinado de la puntuación del cáncer con las modalidades de detección existentes puede mejorar la exactitud del diagnóstico en los pacientes. Este trabajo prepara el escenario para el uso del repertorio de TCR de sangre periférica para la detección no invasiva del cáncer. El estudio fue publicado el 19 de agosto de 2020 en la revista Science Translational Medicine.
Enlace relacionado:
Centro Médico de la UT Southwestern
Últimas Inmunología noticias
- Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
- Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
- Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer
- Prueba de líquido cefalorraquídeo predice efecto secundario peligroso del tratamiento del cáncer
- Nueva prueba mide inmunidad de bebés prematuros usando sólo dos gotas de sangre
- Simple análisis de sangre ayudaría a elegir mejores tratamientos para pacientes con cáncer de endometrio recurrente
- Nuevo método analítico rastrea progresión de enfermedades autoinmunes
- Modelo de cáncer gástrico bioimpreso en 3D utiliza tejido del paciente para predecir respuesta a fármacos
- Análisis para detectar infecciones fúngicas podría acabar con biopsias de tejido
- Tecnología de microscopía permite terapias reumatológicas personalizadas
- Nuevo descubrimiento en células inmunes de la sangre abre camino a prueba diagnóstica para Parkinson
- Herramienta de IA utiliza análisis de sangre rutinario para predecir respuesta a inmunoterapia en cáncer
- Análisis de sangre puede predecir tiempo de inmunidad a la vacuna
- Dispositivo basado en chip microfluídico mide inmunidad viral
- Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario
- Método de imágenes mapea conexiones entre células inmunes para predecir supervivencia de pacientes con cáncer
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más