Imagenología no invasiva detecta el cáncer a nivel molecular
Por el equipo editorial de LabMedica en español Actualizado el 26 Aug 2019 |

Imagen: Los científicos combinaron la microscopía multifotónica con algoritmos automáticos de análisis de imágenes y estadísticas para diferenciar entre el tejido sano y el enfermo. En esta imagen, recopilada de una manera no invasiva, completamente libre de etiquetas, el colágeno se colorea de verde mientras que los grupos de células metastásicas ováricas se presentan en rojo (Fotografía cortesía de la Universidad de Tufts).
Para los pacientes con cáncer, la presencia de metástasis dicta la evaluación de estadificación que, a su vez, define la ruta de tratamiento adecuada seleccionada. Para los tumores malignos ginecológicos, como el carcinoma de ovario, es de gran importancia diferenciar entre el estado de la enfermedad localizada y metastásica, ya que afecta drásticamente el tratamiento.
Para el diagnóstico in situ, en tiempo real, las nuevas modalidades de imagenología que ofrecen información metabólica y estructural a nivel celular y subcelular pueden ser de gran ayuda, especialmente porque estas modalidades se incorporan progresivamente en sondas y microendoscopios que permiten el acceso intravital a órganos que se encuentran más profundos en el cuerpo.
Científicos biomédicos de la Universidad de Tufts (Medford, MA, EUA) y sus colegas, recolectaron muestras de ocho pacientes a quienes les realizaron una laparotomía abierta como parte de la atención médica de rutina. Después de la finalización de todos los procedimientos intraabdominales de la operación, se recogieron ocho biopsias de peritoneo parietal sano y, si estaba presente, de cuatro metástasis peritoneales de cada paciente. Todas las lesiones fueron evaluadas por un patólogo utilizando histología estándar de hematoxilina y eosina.
Se tomaron imágenes de los tejidos empleando un microscopio de escaneo láser multifotónico, para generar fluorescencia intrínseca e imágenes de segunda generación armónicas (SHG) a 755 nm y 900 nm de excitación, respectivamente, con emisión de señal recolectada a 460 ± 20 y 525 ± 25 nm. La luz láser se centró en la muestra utilizando un objetivo de 25x (0,9 AN/inmersión en agua), y se emplearon filtros de densidad neutra para lograr una potencia de 25-35 mW. Se evaluaron al menos dos o tres campos aleatorios por tejido, alcanzando un total de 30 y 11 imágenes para los grupos de tejido de biopsia sano y metastásico, respectivamente (512 × 512 píxeles; campo de visión de 600 micras; resolución de 1,17 micras por píxel). Las imágenes se enfocaron dentro de una profundidad de ∼20-100 micras desde la superficie mesotelial de los tejidos.
El equipo descubrió que los tejidos sanos mostraban grandes variaciones en las características de contraste y correlación en función de la distancia, correspondiente a fluctuaciones repetitivas y de mayor intensidad local. Las imágenes de tejido metastásico mostraron un contraste disminuido y valores relacionados con la correlación, representando patrones de intensidad más uniformes y fibras más pequeñas, lo que indica la destrucción del estroma sano por la infiltración cancerosa. Analizando 41 imágenes adquiridas de las biopsias, la técnica clasificó correctamente 40 de 41 imágenes (una exactitud del 97,5%). Un total de 11 muestras se clasificaron correctamente como metastásicas (100% de sensibilidad) y 29 de 30 se clasificaron correctamente como sanas (96,6% de especificidad).
Dimitra Pouli, MD, PhD, residente de patología y coautora del estudio, dijo: “El método utilizado en este trabajo identifica de manera completamente libre de etiquetas las características celulares y tisulares a nivel microscópico, esencialmente actuando como una biopsia sin cuchillo”. El estudio se publicó en la edición de agosto de 2019 de la revista Biomedical Optics Express.
Enlace relacionado:
Universidad de Tufts
Para el diagnóstico in situ, en tiempo real, las nuevas modalidades de imagenología que ofrecen información metabólica y estructural a nivel celular y subcelular pueden ser de gran ayuda, especialmente porque estas modalidades se incorporan progresivamente en sondas y microendoscopios que permiten el acceso intravital a órganos que se encuentran más profundos en el cuerpo.
Científicos biomédicos de la Universidad de Tufts (Medford, MA, EUA) y sus colegas, recolectaron muestras de ocho pacientes a quienes les realizaron una laparotomía abierta como parte de la atención médica de rutina. Después de la finalización de todos los procedimientos intraabdominales de la operación, se recogieron ocho biopsias de peritoneo parietal sano y, si estaba presente, de cuatro metástasis peritoneales de cada paciente. Todas las lesiones fueron evaluadas por un patólogo utilizando histología estándar de hematoxilina y eosina.
Se tomaron imágenes de los tejidos empleando un microscopio de escaneo láser multifotónico, para generar fluorescencia intrínseca e imágenes de segunda generación armónicas (SHG) a 755 nm y 900 nm de excitación, respectivamente, con emisión de señal recolectada a 460 ± 20 y 525 ± 25 nm. La luz láser se centró en la muestra utilizando un objetivo de 25x (0,9 AN/inmersión en agua), y se emplearon filtros de densidad neutra para lograr una potencia de 25-35 mW. Se evaluaron al menos dos o tres campos aleatorios por tejido, alcanzando un total de 30 y 11 imágenes para los grupos de tejido de biopsia sano y metastásico, respectivamente (512 × 512 píxeles; campo de visión de 600 micras; resolución de 1,17 micras por píxel). Las imágenes se enfocaron dentro de una profundidad de ∼20-100 micras desde la superficie mesotelial de los tejidos.
El equipo descubrió que los tejidos sanos mostraban grandes variaciones en las características de contraste y correlación en función de la distancia, correspondiente a fluctuaciones repetitivas y de mayor intensidad local. Las imágenes de tejido metastásico mostraron un contraste disminuido y valores relacionados con la correlación, representando patrones de intensidad más uniformes y fibras más pequeñas, lo que indica la destrucción del estroma sano por la infiltración cancerosa. Analizando 41 imágenes adquiridas de las biopsias, la técnica clasificó correctamente 40 de 41 imágenes (una exactitud del 97,5%). Un total de 11 muestras se clasificaron correctamente como metastásicas (100% de sensibilidad) y 29 de 30 se clasificaron correctamente como sanas (96,6% de especificidad).
Dimitra Pouli, MD, PhD, residente de patología y coautora del estudio, dijo: “El método utilizado en este trabajo identifica de manera completamente libre de etiquetas las características celulares y tisulares a nivel microscópico, esencialmente actuando como una biopsia sin cuchillo”. El estudio se publicó en la edición de agosto de 2019 de la revista Biomedical Optics Express.
Enlace relacionado:
Universidad de Tufts
Últimas Tecnología noticias
- Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos
- Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
- Biosensor basado en papel para detectar glucosa mediante sudor revoluciona tratamiento de diabetes
Canales
Química Clínica
ver canal
Monitorización con espectrometría de masas predice e identifica recaída temprana del mieloma
El mieloma, un tipo de cáncer que afecta la médula ósea, es actualmente incurable, aunque muchos pacientes pueden vivir más de 10 años tras el diagnóstico.... Más
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... MásDiagnóstico Molecular
ver canal
Herramienta genética predice supervivencia de pacientes con cáncer de páncreas
Un marcador tumoral es una sustancia presente en el organismo que puede indicar la presencia de cáncer. Estas sustancias, que pueden incluir proteínas, genes, moléculas u otros compuestos... Más
Prueba de orina diagnostica cáncer de próstata inicial
El cáncer de próstata es una de las principales causas de muerte en hombres a nivel mundial. Un desafío importante para diagnosticar la enfermedad es la ausencia de biomarcadores confiables... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
La meningitis bacteriana es una afección potencialmente mortal: uno de cada seis pacientes fallece y la mitad de los supervivientes experimentan síntomas persistentes. Por lo tanto, un d... Más
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... MásTecnología
ver canal
Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos
Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en... Más
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más