Modelo de IA predice con precisión la progresión de enfermedades autoinmunes
Por el equipo editorial de LabMedica en español Actualizado el 13 Jan 2025 |

Las enfermedades autoinmunes, en las que el sistema inmunitario ataca por error a las célulasy tejidos sanos del cuerpo, a menudo tienen una fase preclínica caracterizada por síntomas leves o la presencia de ciertos anticuerpos en la sangre antes de un diagnóstico formal. Por ejemplo, en las personas con artritis reumatoide, se pueden encontrar anticuerpos en la sangre hasta cinco años antes de que aparezcan los síntomas. Sin embargo, en algunos casos, estos síntomas pueden resolverse por sí solos sin progresar a una enfermedad completa.
Identificar quiénes tienen probabilidades de progresar en la trayectoria de la enfermedad es crucial para un diagnóstico temprano, intervención, tratamiento mejorado y mejor manejo de la enfermedad. Cuanto antes se detecte y se trate una enfermedad, mejor será el resultado, ya que el daño causado por las enfermedades autoinmunes puede ser irreversible una vez que avanzan. Uno de los principales desafíos en la predicción de la progresión de la enfermedad es que el número de personas con una enfermedad autoinmune específica suele ser pequeño, lo que dificulta la construcción de un modelo y un algoritmo precisos debido a la limitación de los datos.
Un equipo de investigadores de la Facultad de Medicina de Penn State (Hershey, Pensilvania, EUA) ha desarrollado un nuevo método para predecir la progresión de enfermedades autoinmunes en personas con síntomas preclínicos. Utilizando inteligencia artificial (IA), el equipo analizó datos de registros médicos electrónicos y estudios genéticos a gran escala de personas con enfermedades autoinmunes para crear una puntuación de predicción de riesgo. Este nuevo método demostró ser entre un 25 % y un 1.000 % más preciso que los modelos existentes para determinar qué individuos progresarían a una enfermedad avanzada.
El nuevo método, llamado Puntuación de progresión genética (GPS, por sus siglas en inglés), puede predecir la transición de las etapas preclínicas a las de la enfermedad. GPS utiliza el concepto de aprendizaje por transferencia, una técnica de aprendizaje automático en la que se entrena un modelo en un conjunto de datos y luego se adapta para un conjunto de datos relacionado pero diferente. Este método ayuda a los investigadores a extraer más información de muestras de datos más pequeñas. Por ejemplo, en imágenes médicas, los modelos de IA pueden ser entrenados inicialmente para distinguir entre imágenes de gatos y perros, que son más fáciles de etiquetar, y luego refinados para identificar tumores malignos versus benignos.
Para crear el conjunto de datos de entrenamiento, los expertos médicos suelen etiquetar las imágenes una por una, un proceso que lleva mucho tiempo y está limitado por la cantidad de imágenes disponibles. Sin embargo, el aprendizaje por transferencia utiliza conjuntos de datos más grandes y fáciles de etiquetar, como imágenes de gatos y perros, para crear una colección mucho más grande. El modelo aprende a diferenciar entre los animales y luego se ajusta para identificar tumores malignos y benignos. GPS se entrena con datos de grandes estudios de asociación del genoma completo (GWAS) de casos y controles, que se utilizan comúnmente en la investigación genética humana para encontrar diferencias genéticas entre personas con una enfermedad autoinmune específica y aquellas que no la padecen.
Este método también integra datos de biobancos basados en registros médicos electrónicos, que brindan información valiosa sobre los pacientes, como variantes genéticas, resultados de laboratorio y diagnósticos clínicos. Estos datos combinados ayudan a identificar a las personas en la etapa preclínica de la enfermedad y a rastrear la progresión desde el estado preclínico hasta el estado patológico. Al fusionar estas dos fuentes de datos, el modelo GPS se perfecciona para incluir los factores más relevantes para el desarrollo real de la enfermedad. Las personas con puntuaciones GPS altas tienen un mayor riesgo de progresar de síntomas preclínicos a enfermedad plena.
El equipo aplicó su modelo utilizando datos del mundo real del biobanco de la Universidad de Vanderbilt para predecir la progresión de la artritis reumatoide y el lupus, y validó las puntuaciones de riesgo GPS con datos del biobanco All of Us, una iniciativa de los Institutos Nacionales de Salud. Los resultados, publicados en Nature Communications, mostraron que GPS superó a otros 20 modelos que se basaron únicamente en datos del biobanco o de casos y controles, así como a los que combinaron ambos utilizando otros métodos. La predicción precisa de la progresión de la enfermedad con GPS podría conducir a intervenciones tempranas, seguimiento dirigido y decisiones de tratamiento personalizadas, mejorando en última instancia los resultados de los pacientes. También podría mejorar el diseño y el reclutamiento para ensayos clínicos al identificar a quienes tienen más probabilidades de beneficiarse de nuevas terapias. Aunque este estudio se centró en enfermedades autoinmunes, los investigadores creen que este enfoque también podría aplicarse al estudio de otros tipos de enfermedades.
“Al enfocarnos en una población más relevante (personas con antecedentes familiares o que están experimentando síntomas tempranos), podemos usar el aprendizaje automático para identificar a los pacientes con mayor riesgo de padecer la enfermedad y luego identificar terapias adecuadas que puedan ralentizar la progresión de la enfermedad. Es una información mucho más significativa y procesable”, dijo Dajiang Liu, profesor distinguido, vicepresidente de investigación y director de inteligencia artificial e informática biomédica en la Facultad de Medicina de Penn State y coautor principal del estudio.
Últimas Inmunología noticias
- Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer
- Prueba de líquido cefalorraquídeo predice efecto secundario peligroso del tratamiento del cáncer
- Nueva prueba mide inmunidad de bebés prematuros usando sólo dos gotas de sangre
- Simple análisis de sangre ayudaría a elegir mejores tratamientos para pacientes con cáncer de endometrio recurrente
- Nuevo método analítico rastrea progresión de enfermedades autoinmunes
- Modelo de cáncer gástrico bioimpreso en 3D utiliza tejido del paciente para predecir respuesta a fármacos
- Análisis para detectar infecciones fúngicas podría acabar con biopsias de tejido
- Tecnología de microscopía permite terapias reumatológicas personalizadas
- Nuevo descubrimiento en células inmunes de la sangre abre camino a prueba diagnóstica para Parkinson
- Herramienta de IA utiliza análisis de sangre rutinario para predecir respuesta a inmunoterapia en cáncer
- Análisis de sangre puede predecir tiempo de inmunidad a la vacuna
- Dispositivo basado en chip microfluídico mide inmunidad viral
- Simple análisis sanguíneo podría detectar resistencia a fármacos en cáncer de ovario
- Método de imágenes mapea conexiones entre células inmunes para predecir supervivencia de pacientes con cáncer
- Herramienta computacional predice resultados de inmunoterapia en cáncer de mama metastásico
- Biomarcador podría predecir respuesta a inmunoterapia en cáncer de hígado
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Prueba de diagnóstico detiene transmisión de hepatitis B de madre a hijo
La hepatitis B, una inflamación del hígado causada por el virus de la hepatitis B (VHB), es la segunda causa principal de muerte infecciosa a nivel mundial, después de la tuberculosis.... Más
Simple prueba de orina podría ayudar a evitar exploraciones invasivas para cáncer de riñón
El carcinoma renal de células claras (CRcc) es el tipo más frecuente de cáncer de riñón, representando aproximadamente el 90 % de los casos. Cada año, alrededor de 400.... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer
En el continuo avance de la medicina personalizada, un nuevo estudio ha aportado evidencia que respalda el uso de una herramienta que detecta moléculas derivadas del cáncer en la sangre de... MásPrueba de líquido cefalorraquídeo predice efecto secundario peligroso del tratamiento del cáncer
En los últimos años, la inmunoterapia contra el cáncer se ha convertido en un enfoque prometedor que aprovecha el sistema inmunitario del paciente para combatir el cáncer.... MásMicrobiología
ver canalSistema de identificación y PSA ayuda a diagnosticar enfermedades infecciosas y combatir RAM
Cada año, 11 millones de personas en todo el mundo mueren de sepsis, de las cuales 1,3 millones se deben a bacterias resistentes a los antibióticos. La resistencia a los antimicrobianos (RAM)... Más
Panel gastrointestinal permite detección rápida de cinco patógenos bacterianos comunes
La gastroenteritis infecciosa aguda se produce en aproximadamente 179 millones de casos cada año en los Estados Unidos, lo que genera una cantidad significativa de visitas ambulatorias y hospitalizaciones.... MásPatología
ver canal
Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97 %
La enfermedad celíaca es un trastorno autoinmune desencadenado por el consumo de gluten, que causa síntomas como calambres estomacales, diarrea, erupciones cutáneas, pérdida... Más
Condiciones preanalíticas influyen en estabilidad de microARN libres de células en muestras de plasma sanguíneo
Científicos de todo el mundo trabajan para mejorar la calidad del diagnóstico y el pronóstico de diversas enfermedades, incluido el cáncer, mediante el análisis de diferentes... MásTecnología
ver canal
Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
Los metabolitos son compuestos cruciales que impulsan las funciones vitales, desempeñando un papel clave en la producción de energía, la regulación de la actividad celular y... Más
Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
Los dispositivos microfluídicos son sistemas de diagnóstico capaces de analizar pequeños volúmenes de materiales con precisión y rapidez. Estos dispositivos se utilizan... MásIndustria
ver canal
Philips e Ibex amplían colaboración para mejorar flujos de trabajo de patología basados en IA
Royal Philips (Ámsterdam, Países Bajos) ha ampliado su colaboración con Ibex Medical Analytics (Tel Aviv, Israel) y ha lanzado la nueva Solución de Patología Philips... Más