Prueba del mismo día identifica infecciones secundarias en pacientes de COVID-19
Por el equipo editorial de LabMedica en español Actualizado el 01 Dec 2021 |

Imagen: Metagenómica clínica (CMg) mediante secuenciación de nanoporos (Fotografía cortesía de Oxford Nanopore Technologies)
La unidad de cuidados intensivos (UCI) es un entorno dinámico con contacto frecuente entre el personal y el paciente para la monitorización invasiva, las intervenciones y el cuidado personal que, en conjunto, presentan el riesgo de infección secundaria o nosocomial. Cuando se atiende a pacientes críticamente enfermos en la UCI, los médicos pueden tomar muestras profundas de sus pulmones.
Actualmente, las muestras se envían a menudo a varios laboratorios donde se realizan diferentes cultivos bacterianos y fúngicos junto con otras pruebas moleculares complejas. Los resultados iniciales tardan de dos a cuatro días en saberse. El SARS-CoV-2 ha ejercido una presión considerable sobre las UCI, lo que tiene el potencial de aumentar la infección nosocomial, el tratamiento antimicrobiano y la resistencia a los antimicrobianos (RAM).
Un equipo de especialistas en enfermedades infecciosas dirigido por los del Hospital Guy y St. Thomas (Londres, Reino Unido), procesó muestras respiratorias clínicas sobrantes de 34 pacientes de la UCI con COVID-19, con sospecha de infecciones secundarias. Las muestras procesadas por el laboratorio clínico incluyeron muestras clínicas respiratorias (aspirados traqueales, lavados broncoalveolares (LBA) y lavados broncoalveolares no directos (NDL, un LBA recolectado sin el uso de un broncoscopio) para (i) cultivo microbiológico de rutina para patógenos bacterianos y fúngicos o detección de SARS-CoV-2 por PCR y (ii) sueros y LBA para la detección del antígeno de galactomanano (GM) cuando se sospecha una infección por Aspergillus.
Se prepararon placas de agar Sabouraud para la detección de Candida spp. y Aspergillus spp. y se incubaron durante cinco días a 37°C en condiciones aeróbicas. Las colonias bacterianas se identificaron utilizando MALDI-TOF (Bruker, Billerica, MA, EUA) excepto en el caso de Aspergillus spp. donde se realizó la microscopía. Se evaluó la metagenómica clínica (CMg) mediante secuenciación de nanoporos (Oxford Nanopore Technologies, Oxford Science Park, Reino Unido) en un estudio de prueba de concepto en 43 muestras respiratorias de 34 pacientes intubados, en siete unidades de cuidados intensivos (UCI) durante un período de 9 semanas durante la primera ola pandémica de COVID-19. El tamaño de los fragmentos y la calidad de las bibliotecas metagenómicas se analizaron mediante la plataforma de electroforesis automatizada TapeStation 4200 (Agilent Technologies, Santa Clara, CA, EUA).
Los investigadores informaron que un flujo de trabajo de CMg de 8 horas fue 92% sensible y 82% específico para la identificación bacteriana basada en muestras con cultivo positivo y cultivo negativo, respectivamente. La secuenciación de CMg informó la presencia o ausencia de genes β-lactámicos resistentes portados por Enterobacteriales que modificarían los antibióticos iniciales recomendados por las guías en todos los casos. CMg también fue 100% concordante con la PCR cuantitativa para detectar Aspergillus fumigatus de cuatro muestras positivas y 39 negativas. La tipificación molecular mediante datos de secuenciación de 24 horas identificó un brote de Klebsiella pneumoniae ST307 multirresistente que involucró a cuatro pacientes y un brote de Corynebacterium striatum multirresistente que involucró a 14 pacientes en tres UCI.
Jonathan D. Edgeworth, PhD, microbiólogo consultor y autor principal del estudio, dijo: “Tan pronto como comenzó la pandemia, nuestros científicos se dieron cuenta de que sería beneficioso secuenciar los genomas de todas las bacterias y hongos que causan infecciones en pacientes con COVID-19 mientras se encuentran en la UCI. En unas pocas semanas, demostramos que pueden diagnosticar infecciones secundarias, dirigir el tratamiento con antibióticos y detectar brotes mucho antes que las tecnologías actuales, todo a partir de una sola muestra”.
Los autores concluyeron que las pruebas de CMg proporcionan una detección exacta de patógenos y una predicción de la resistencia a los antibióticos en un flujo de trabajo de laboratorio del mismo día, con genomas ensamblados disponibles al día siguiente para la vigilancia genómica. La oferta de esta tecnología en un entorno de servicio podría cambiar fundamentalmente el enfoque del equipo multidisciplinario para manejar las infecciones de la UCI. El potencial para mejorar el tratamiento inicial dirigido y detectar rápidamente brotes insospechados de patógenos multirresistentes justifica una evaluación clínica más rápida de CMg. El estudio fue publicado el 17 de noviembre de 2021 en la revista Genome Medicine.
Enlace relacionado:
Hospital Guy y St. Thomas
Oxford Nanopore Technologies
Agilent Technologies
Actualmente, las muestras se envían a menudo a varios laboratorios donde se realizan diferentes cultivos bacterianos y fúngicos junto con otras pruebas moleculares complejas. Los resultados iniciales tardan de dos a cuatro días en saberse. El SARS-CoV-2 ha ejercido una presión considerable sobre las UCI, lo que tiene el potencial de aumentar la infección nosocomial, el tratamiento antimicrobiano y la resistencia a los antimicrobianos (RAM).
Un equipo de especialistas en enfermedades infecciosas dirigido por los del Hospital Guy y St. Thomas (Londres, Reino Unido), procesó muestras respiratorias clínicas sobrantes de 34 pacientes de la UCI con COVID-19, con sospecha de infecciones secundarias. Las muestras procesadas por el laboratorio clínico incluyeron muestras clínicas respiratorias (aspirados traqueales, lavados broncoalveolares (LBA) y lavados broncoalveolares no directos (NDL, un LBA recolectado sin el uso de un broncoscopio) para (i) cultivo microbiológico de rutina para patógenos bacterianos y fúngicos o detección de SARS-CoV-2 por PCR y (ii) sueros y LBA para la detección del antígeno de galactomanano (GM) cuando se sospecha una infección por Aspergillus.
Se prepararon placas de agar Sabouraud para la detección de Candida spp. y Aspergillus spp. y se incubaron durante cinco días a 37°C en condiciones aeróbicas. Las colonias bacterianas se identificaron utilizando MALDI-TOF (Bruker, Billerica, MA, EUA) excepto en el caso de Aspergillus spp. donde se realizó la microscopía. Se evaluó la metagenómica clínica (CMg) mediante secuenciación de nanoporos (Oxford Nanopore Technologies, Oxford Science Park, Reino Unido) en un estudio de prueba de concepto en 43 muestras respiratorias de 34 pacientes intubados, en siete unidades de cuidados intensivos (UCI) durante un período de 9 semanas durante la primera ola pandémica de COVID-19. El tamaño de los fragmentos y la calidad de las bibliotecas metagenómicas se analizaron mediante la plataforma de electroforesis automatizada TapeStation 4200 (Agilent Technologies, Santa Clara, CA, EUA).
Los investigadores informaron que un flujo de trabajo de CMg de 8 horas fue 92% sensible y 82% específico para la identificación bacteriana basada en muestras con cultivo positivo y cultivo negativo, respectivamente. La secuenciación de CMg informó la presencia o ausencia de genes β-lactámicos resistentes portados por Enterobacteriales que modificarían los antibióticos iniciales recomendados por las guías en todos los casos. CMg también fue 100% concordante con la PCR cuantitativa para detectar Aspergillus fumigatus de cuatro muestras positivas y 39 negativas. La tipificación molecular mediante datos de secuenciación de 24 horas identificó un brote de Klebsiella pneumoniae ST307 multirresistente que involucró a cuatro pacientes y un brote de Corynebacterium striatum multirresistente que involucró a 14 pacientes en tres UCI.
Jonathan D. Edgeworth, PhD, microbiólogo consultor y autor principal del estudio, dijo: “Tan pronto como comenzó la pandemia, nuestros científicos se dieron cuenta de que sería beneficioso secuenciar los genomas de todas las bacterias y hongos que causan infecciones en pacientes con COVID-19 mientras se encuentran en la UCI. En unas pocas semanas, demostramos que pueden diagnosticar infecciones secundarias, dirigir el tratamiento con antibióticos y detectar brotes mucho antes que las tecnologías actuales, todo a partir de una sola muestra”.
Los autores concluyeron que las pruebas de CMg proporcionan una detección exacta de patógenos y una predicción de la resistencia a los antibióticos en un flujo de trabajo de laboratorio del mismo día, con genomas ensamblados disponibles al día siguiente para la vigilancia genómica. La oferta de esta tecnología en un entorno de servicio podría cambiar fundamentalmente el enfoque del equipo multidisciplinario para manejar las infecciones de la UCI. El potencial para mejorar el tratamiento inicial dirigido y detectar rápidamente brotes insospechados de patógenos multirresistentes justifica una evaluación clínica más rápida de CMg. El estudio fue publicado el 17 de noviembre de 2021 en la revista Genome Medicine.
Enlace relacionado:
Hospital Guy y St. Thomas
Oxford Nanopore Technologies
Agilent Technologies
Últimas Microbiología noticias
- Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
- Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
- Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
- Sistema de identificación y PSA ayuda a diagnosticar enfermedades infecciosas y combatir RAM
- Panel gastrointestinal permite detección rápida de cinco patógenos bacterianos comunes
- Pruebas rápidas PCR en UCI mejoran uso de antibióticos
- Firma genética única predice resistencia a fármacos en bacterias
- Sistema de código de barras rastrea bacterias de neumonía mientras infectan el torrente sanguíneo
- Prueba rápida de diagnóstico de sepsis demuestra mejor atención al paciente y ahorro en aplicaciones hospitalarias
- Sistema de diagnóstico rápido detecta sepsis neonatal en horas
- Nueva prueba diagnostica neumonía bacteriana directamente a partir de sangre completa
- Ensayo de liberación de interferón-γ es eficaz en pacientes con EPOC y tuberculosis pulmonar
- Nuevas pruebas en punto de atención ayudan a reducir uso excesivo de antibióticos
- Prueba de sepsis rápida permite diferenciar infecciones bacterianas, virales y enfermedades no infecciosas
- Prueba CRISPR-TB permite diagnóstico temprano de enfermedad y cribado de la población
- Panel sindrómico ofrece respuestas rápidas para diagnóstico ambulatorio de enfermedades gastrointestinales
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer
Nuevos medicamentos para la enfermedad de Alzheimer, la forma más común de demencia, están ahora disponibles. Estos tratamientos, conocidos como "anticuerpos amiloides",... Más
Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis
Las ataxias cerebelosas autoinmunes son trastornos muy incapacitantes que se caracterizan por una disminución de la habilidad para coordinar el movimiento muscular. Los autoanticuerpos cerebelosos... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásPatología
ver canal
Nuevo método basado en aprendizaje automático detecta contaminación microbiana en cultivos celulares
La terapia celular tiene un gran potencial en el tratamiento de enfermedades como el cáncer, las enfermedades inflamatorias y los trastornos degenerativos crónicos mediante la manipulación o el reemplazo... Más
Nuevo método con corrección de errores detecta cáncer únicamente en muestras de sangre
La tecnología de biopsia líquida, que se basa en análisis de sangre para la detección temprana del cáncer y el seguimiento de la carga oncológica en los pacientes,... MásTecnología
ver canal
Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
A finales de 2023, aproximadamente 40 millones de personas en todo el mundo vivían con VIH, y alrededor de 630.000 personas murieron por enfermedades relacionadas con el sida ese mismo año.... Más
Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
El dolor crónico es una afección generalizada que sigue siendo difícil de controlar, y los métodos clínicos existentes para su tratamiento se basan en gran medida en... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más