Datos del microbioma intestinal ayudan en la detección rutinaria de la enfermedad cardiovascular
|
Por el equipo editorial de LabMedica en español Actualizado el 21 Sep 2020 |

Imagen: Los datos del microbioma intestinal ayudan a la detección de rutina de enfermedades cardiovasculares (Fotografía cortesía de Nishant Mehta PhD).
Además de los factores genéticos y ambientales, la microbiota intestinal ha surgido como un nuevo factor que influye en las enfermedades cardiovasculares (ECV). Aunque las relaciones causa-efecto no están claramente establecidas, las asociaciones reportadas entre las alteraciones en la microbiota intestinal y la ECV son prominentes.
Estudios recientes han encontrado un vínculo entre la microbiota intestinal, los microorganismos en el tracto digestivo humano, y la ECV, que es la principal causa de mortalidad en todo el mundo. La microbiota intestinal es muy variable entre individuos y se han informado diferencias en la composición microbiana intestinal entre personas con y sin ECV.
Científicos de la Universidad de Toledo (Toledo, OH, EUA) plantearon la hipótesis de que se podría usar el aprendizaje automático (AA) para el cribado de diagnóstico de la ECV con base en el microbioma Intestinal. Para probar su hipótesis, se analizaron los datos de secuenciación del ARN ribosómico 16S fecal de 478 sujetos humanos con ECV y 473 sin ECV recopilados a través del Proyecto Intestinal Americano utilizando cinco algoritmos de AA supervisados, que incluyen bosque aleatorio, máquina de vectores de apoyo, árbol de decisión, red elástica y redes neuronales.
El equipo identificó 39 taxones bacterianos diferenciales entre los grupos con ECV y sin ECV. El modelado de AA utilizando estas características taxonómicas logró un área de prueba bajo la curva de características operativas del receptor (0,0, antidiscriminación perfecta; 0,5, adivinación aleatoria; 1,0, discriminación perfecta) de ≈0,58 (bosque aleatorio y redes neuronales). A continuación, se entrenaron los modelos de AA con las 500 características principales de alta varianza de las unidades taxonómicas operativas, en lugar de taxones bacterianos, y se logró un área de prueba mejorada bajo las curvas de características operativas del receptor de ≈0,65 (bosque aleatorio).
Además, al limitar la selección a solo las 25 características de la unidad taxonómica operativa de mayor contribución, el área bajo las curvas de características operativas del receptor se mejoró significativamente a ≈0,70. Entre las bacterias identificadas se encuentran Bacteroides, Subdoligranulum, Clostridium, Megasphaera, Eubacterium, Veillonella, Acidaminococcus y Listeria, que fueron más abundantes en el grupo de ECV. Faecalibacterium, Ruminococcus, Proteus, Lachnospira, Brevundimonas, Alistipes y Neisseria fueron más abundantes en el grupo sin ECV.
Bina Joe, PhD, FAHA, profesora universitaria distinguida y presidente del departamento de fisiología y farmacología, dijo: “A pesar de que los microbiomas intestinales son muy variables entre los individuos, nos sorprendió el nivel de exactitud prometedora obtenida a partir de estos resultados preliminares que indican que la composición de la microbiota fecal podría servir, potencialmente, como un método de detección diagnóstica conveniente para las ECV”.
Los autores concluyeron que, en general, el estudio fue el primero en identificar la disbiosis de la microbiota intestinal en pacientes con ECV como grupo y aplicar este conocimiento para desarrollar un enfoque de AA, basado en el microbioma intestinal, para el cribado diagnóstico de la ECV. El estudio fue publicado el 10 de septiembre de 2020 en la revista Hypertension.
Enlace relacionado:
Universidad de Toledo
Estudios recientes han encontrado un vínculo entre la microbiota intestinal, los microorganismos en el tracto digestivo humano, y la ECV, que es la principal causa de mortalidad en todo el mundo. La microbiota intestinal es muy variable entre individuos y se han informado diferencias en la composición microbiana intestinal entre personas con y sin ECV.
Científicos de la Universidad de Toledo (Toledo, OH, EUA) plantearon la hipótesis de que se podría usar el aprendizaje automático (AA) para el cribado de diagnóstico de la ECV con base en el microbioma Intestinal. Para probar su hipótesis, se analizaron los datos de secuenciación del ARN ribosómico 16S fecal de 478 sujetos humanos con ECV y 473 sin ECV recopilados a través del Proyecto Intestinal Americano utilizando cinco algoritmos de AA supervisados, que incluyen bosque aleatorio, máquina de vectores de apoyo, árbol de decisión, red elástica y redes neuronales.
El equipo identificó 39 taxones bacterianos diferenciales entre los grupos con ECV y sin ECV. El modelado de AA utilizando estas características taxonómicas logró un área de prueba bajo la curva de características operativas del receptor (0,0, antidiscriminación perfecta; 0,5, adivinación aleatoria; 1,0, discriminación perfecta) de ≈0,58 (bosque aleatorio y redes neuronales). A continuación, se entrenaron los modelos de AA con las 500 características principales de alta varianza de las unidades taxonómicas operativas, en lugar de taxones bacterianos, y se logró un área de prueba mejorada bajo las curvas de características operativas del receptor de ≈0,65 (bosque aleatorio).
Además, al limitar la selección a solo las 25 características de la unidad taxonómica operativa de mayor contribución, el área bajo las curvas de características operativas del receptor se mejoró significativamente a ≈0,70. Entre las bacterias identificadas se encuentran Bacteroides, Subdoligranulum, Clostridium, Megasphaera, Eubacterium, Veillonella, Acidaminococcus y Listeria, que fueron más abundantes en el grupo de ECV. Faecalibacterium, Ruminococcus, Proteus, Lachnospira, Brevundimonas, Alistipes y Neisseria fueron más abundantes en el grupo sin ECV.
Bina Joe, PhD, FAHA, profesora universitaria distinguida y presidente del departamento de fisiología y farmacología, dijo: “A pesar de que los microbiomas intestinales son muy variables entre los individuos, nos sorprendió el nivel de exactitud prometedora obtenida a partir de estos resultados preliminares que indican que la composición de la microbiota fecal podría servir, potencialmente, como un método de detección diagnóstica conveniente para las ECV”.
Los autores concluyeron que, en general, el estudio fue el primero en identificar la disbiosis de la microbiota intestinal en pacientes con ECV como grupo y aplicar este conocimiento para desarrollar un enfoque de AA, basado en el microbioma intestinal, para el cribado diagnóstico de la ECV. El estudio fue publicado el 10 de septiembre de 2020 en la revista Hypertension.
Enlace relacionado:
Universidad de Toledo
Últimas Patología noticias
- Dispositivo de clasificación celular sintonizable tiene potencial para aplicaciones biomédicas
- Herramienta de IA mejora a medicos detectando anomalías en células sanguíneas
- Herramienta de IA analiza rápidamente imágenes complejas de cáncer para tratamiento personalizado
- Tecnología diagnóstica analiza rápidamente biofluidos utilizando una sola gota
- Nueva tecnología rastrea células cancerosas ocultas más rápido
- Herramienta de IA mejora detección del cáncer de mama
- Herramienta de IA predice éxito del tratamiento de cáncer de recto
- Análisis de sangre y esputo predicen exacerbación aguda de EPOC
- Herramienta de IA transforma detección del cáncer de piel con alta precisión
- Firmas inmunitarias únicas distinguen enfermedad autoinmune rara de esclerosis múltiple
- Sencillo método de microscopía óptica revela estructuras ocultas con un detalle asombroso
- Tecnología de hidrogeles aísla vesículas extracelulares para diagnóstico precoz de enfermedades
- Herramienta de IA mejora detección del cáncer de piel
- Técnica de imagen de alta sensibilidad detecta daño en mielina
- Herramienta de mapeo del genoma 3D mejora diagnóstico y tratamiento de enfermedades genéticas
- Nueva herramienta de análisis molecular mejora diagnóstico de enfermedades
Canales
Química Clínica
ver canal
Sonda de imágenes químicas podría rastrear y tratar cáncer de próstata
El cáncer de próstata sigue siendo una de las principales causas de enfermedad y muerte en hombres, y muchos pacientes desarrollan resistencia a las terapias hormonales bloqueantes convencionales.... Más
Discrepancia entre dos pruebas comunes de función renal indica problemas de salud graves
La creatinina ha sido durante mucho tiempo el método estándar para medir la filtración renal, mientras que la cistatina C, una proteína producida por todas las células humanas, se ha recomendado como marcador... MásDiagnóstico Molecular
ver canal
Sencilla prueba de orina revolucionará diagnóstico y tratamiento del cáncer de vejiga
El cáncer de vejiga es uno de los cánceres urológicos más comunes y mortales, y se caracteriza por una alta tasa de recurrencia. El diagnóstico y el seguimiento aún... Más
Análisis snaguíneo para detección más temprana y sencilla de fibrosis hepática
El daño hepático persistente causado por el abuso de alcohol o infecciones virales puede desencadenar fibrosis hepática, una afección en la que el tejido sano se reemplaza gradualmente... MásHematología
ver canal
Análisis sanguíneo de actividad plaquetaria en mediana edad podría identificar riesgo temprano de Alzheimer
La detección temprana de la enfermedad de Alzheimer sigue siendo una de las mayores necesidades insatisfechas en neurología, sobre todo porque los cambios biológicos que subyacen al... Más
Medición de microvesículas podría detectar lesiones vasculares en pacientes con anemia falciforme
Evaluar la gravedad de la enfermedad de células falciformes (ECF) sigue siendo un reto, sobre todo al intentar predecir la hemólisis, el daño vascular y el riesgo de complicaciones... MásInmunología
ver canal
Nueva prueba distingue falsos positivos inducidos por vacuna de infección activa por VIH
Desde que se identificó el VIH en 1983, más de 91 millones de personas han contraído el virus y más de 44 millones han fallecido por causas relacionadas. Hoy en día, casi 40 millones de personas en todo... Más
Prueba de firma genética predice respuesta a tratamientos clave para cáncer de mama
Los inhibidores de DK4/6, combinados con terapia hormonal, se han convertido en un tratamiento fundamental para el cáncer de mama avanzado HR+/HER2–, ya que ralentizan el crecimiento tumoral... MásPatología
ver canal
Dispositivo de clasificación celular sintonizable tiene potencial para aplicaciones biomédicas
Aislar células cancerosas raras de la sangre es esencial para diagnosticar metástasis y orientar las decisiones terapéuticas, pero sigue siendo un desafío técnico.... MásHerramienta de IA mejora a medicos detectando anomalías en células sanguíneas
El diagnóstico de trastornos sanguíneos depende del reconocimiento de anomalías sutiles en el tamaño, la forma y la estructura celular. Sin embargo, este proceso es lento, subjetivo y requiere años de... Más
Herramienta de IA analiza rápidamente imágenes complejas de cáncer para tratamiento personalizado
Las imágenes complejas de biopsia digital, que normalmente requieren hasta 20 minutos para ser evaluadas por un patólogo experto, ahora pueden analizarse en aproximadamente un minuto mediante una nueva... MásTecnología
ver canal
Modelo de inteligencia artificial podría acelerar diagnóstico de enfermedades raras
Identificar qué variantes genéticas causan enfermedades sigue siendo uno de los mayores desafíos de la medicina genómica. Cada persona porta decenas de miles de cambios en el... Más
Sensor de saliva con IA permite detección precoz del cáncer de cabeza y cuello
La detección precoz del cáncer de cabeza y cuello sigue siendo difícil porque la enfermedad produce pocos o ningún síntoma en sus primeras etapas, y las lesiones a menudo... MásIndustria
ver canal
Abbott adquiere Exact Sciences, empresa de detección de cáncer
Abbott (Abbott Park, IL, EUA) ha firmado un acuerdo definitivo para adquirir Exact Sciences (Madison, WI, EUA), lo que le permitirá entrar y liderar en segmentos de diagnóstico de cáncer... Más








