Datos del microbioma intestinal ayudan en la detección rutinaria de la enfermedad cardiovascular
Por el equipo editorial de LabMedica en español Actualizado el 21 Sep 2020 |

Imagen: Los datos del microbioma intestinal ayudan a la detección de rutina de enfermedades cardiovasculares (Fotografía cortesía de Nishant Mehta PhD).
Además de los factores genéticos y ambientales, la microbiota intestinal ha surgido como un nuevo factor que influye en las enfermedades cardiovasculares (ECV). Aunque las relaciones causa-efecto no están claramente establecidas, las asociaciones reportadas entre las alteraciones en la microbiota intestinal y la ECV son prominentes.
Estudios recientes han encontrado un vínculo entre la microbiota intestinal, los microorganismos en el tracto digestivo humano, y la ECV, que es la principal causa de mortalidad en todo el mundo. La microbiota intestinal es muy variable entre individuos y se han informado diferencias en la composición microbiana intestinal entre personas con y sin ECV.
Científicos de la Universidad de Toledo (Toledo, OH, EUA) plantearon la hipótesis de que se podría usar el aprendizaje automático (AA) para el cribado de diagnóstico de la ECV con base en el microbioma Intestinal. Para probar su hipótesis, se analizaron los datos de secuenciación del ARN ribosómico 16S fecal de 478 sujetos humanos con ECV y 473 sin ECV recopilados a través del Proyecto Intestinal Americano utilizando cinco algoritmos de AA supervisados, que incluyen bosque aleatorio, máquina de vectores de apoyo, árbol de decisión, red elástica y redes neuronales.
El equipo identificó 39 taxones bacterianos diferenciales entre los grupos con ECV y sin ECV. El modelado de AA utilizando estas características taxonómicas logró un área de prueba bajo la curva de características operativas del receptor (0,0, antidiscriminación perfecta; 0,5, adivinación aleatoria; 1,0, discriminación perfecta) de ≈0,58 (bosque aleatorio y redes neuronales). A continuación, se entrenaron los modelos de AA con las 500 características principales de alta varianza de las unidades taxonómicas operativas, en lugar de taxones bacterianos, y se logró un área de prueba mejorada bajo las curvas de características operativas del receptor de ≈0,65 (bosque aleatorio).
Además, al limitar la selección a solo las 25 características de la unidad taxonómica operativa de mayor contribución, el área bajo las curvas de características operativas del receptor se mejoró significativamente a ≈0,70. Entre las bacterias identificadas se encuentran Bacteroides, Subdoligranulum, Clostridium, Megasphaera, Eubacterium, Veillonella, Acidaminococcus y Listeria, que fueron más abundantes en el grupo de ECV. Faecalibacterium, Ruminococcus, Proteus, Lachnospira, Brevundimonas, Alistipes y Neisseria fueron más abundantes en el grupo sin ECV.
Bina Joe, PhD, FAHA, profesora universitaria distinguida y presidente del departamento de fisiología y farmacología, dijo: “A pesar de que los microbiomas intestinales son muy variables entre los individuos, nos sorprendió el nivel de exactitud prometedora obtenida a partir de estos resultados preliminares que indican que la composición de la microbiota fecal podría servir, potencialmente, como un método de detección diagnóstica conveniente para las ECV”.
Los autores concluyeron que, en general, el estudio fue el primero en identificar la disbiosis de la microbiota intestinal en pacientes con ECV como grupo y aplicar este conocimiento para desarrollar un enfoque de AA, basado en el microbioma intestinal, para el cribado diagnóstico de la ECV. El estudio fue publicado el 10 de septiembre de 2020 en la revista Hypertension.
Enlace relacionado:
Universidad de Toledo
Estudios recientes han encontrado un vínculo entre la microbiota intestinal, los microorganismos en el tracto digestivo humano, y la ECV, que es la principal causa de mortalidad en todo el mundo. La microbiota intestinal es muy variable entre individuos y se han informado diferencias en la composición microbiana intestinal entre personas con y sin ECV.
Científicos de la Universidad de Toledo (Toledo, OH, EUA) plantearon la hipótesis de que se podría usar el aprendizaje automático (AA) para el cribado de diagnóstico de la ECV con base en el microbioma Intestinal. Para probar su hipótesis, se analizaron los datos de secuenciación del ARN ribosómico 16S fecal de 478 sujetos humanos con ECV y 473 sin ECV recopilados a través del Proyecto Intestinal Americano utilizando cinco algoritmos de AA supervisados, que incluyen bosque aleatorio, máquina de vectores de apoyo, árbol de decisión, red elástica y redes neuronales.
El equipo identificó 39 taxones bacterianos diferenciales entre los grupos con ECV y sin ECV. El modelado de AA utilizando estas características taxonómicas logró un área de prueba bajo la curva de características operativas del receptor (0,0, antidiscriminación perfecta; 0,5, adivinación aleatoria; 1,0, discriminación perfecta) de ≈0,58 (bosque aleatorio y redes neuronales). A continuación, se entrenaron los modelos de AA con las 500 características principales de alta varianza de las unidades taxonómicas operativas, en lugar de taxones bacterianos, y se logró un área de prueba mejorada bajo las curvas de características operativas del receptor de ≈0,65 (bosque aleatorio).
Además, al limitar la selección a solo las 25 características de la unidad taxonómica operativa de mayor contribución, el área bajo las curvas de características operativas del receptor se mejoró significativamente a ≈0,70. Entre las bacterias identificadas se encuentran Bacteroides, Subdoligranulum, Clostridium, Megasphaera, Eubacterium, Veillonella, Acidaminococcus y Listeria, que fueron más abundantes en el grupo de ECV. Faecalibacterium, Ruminococcus, Proteus, Lachnospira, Brevundimonas, Alistipes y Neisseria fueron más abundantes en el grupo sin ECV.
Bina Joe, PhD, FAHA, profesora universitaria distinguida y presidente del departamento de fisiología y farmacología, dijo: “A pesar de que los microbiomas intestinales son muy variables entre los individuos, nos sorprendió el nivel de exactitud prometedora obtenida a partir de estos resultados preliminares que indican que la composición de la microbiota fecal podría servir, potencialmente, como un método de detección diagnóstica conveniente para las ECV”.
Los autores concluyeron que, en general, el estudio fue el primero en identificar la disbiosis de la microbiota intestinal en pacientes con ECV como grupo y aplicar este conocimiento para desarrollar un enfoque de AA, basado en el microbioma intestinal, para el cribado diagnóstico de la ECV. El estudio fue publicado el 10 de septiembre de 2020 en la revista Hypertension.
Enlace relacionado:
Universidad de Toledo
Últimas Microbiología noticias
- Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
- Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas
- Sistema de identificación y PSA ayuda a diagnosticar enfermedades infecciosas y combatir RAM
- Panel gastrointestinal permite detección rápida de cinco patógenos bacterianos comunes
- Pruebas rápidas PCR en UCI mejoran uso de antibióticos
- Firma genética única predice resistencia a fármacos en bacterias
- Sistema de código de barras rastrea bacterias de neumonía mientras infectan el torrente sanguíneo
- Prueba rápida de diagnóstico de sepsis demuestra mejor atención al paciente y ahorro en aplicaciones hospitalarias
- Sistema de diagnóstico rápido detecta sepsis neonatal en horas
- Nueva prueba diagnostica neumonía bacteriana directamente a partir de sangre completa
- Ensayo de liberación de interferón-γ es eficaz en pacientes con EPOC y tuberculosis pulmonar
- Nuevas pruebas en punto de atención ayudan a reducir uso excesivo de antibióticos
- Prueba de sepsis rápida permite diferenciar infecciones bacterianas, virales y enfermedades no infecciosas
- Prueba CRISPR-TB permite diagnóstico temprano de enfermedad y cribado de la población
- Panel sindrómico ofrece respuestas rápidas para diagnóstico ambulatorio de enfermedades gastrointestinales
- Plataforma sin cultivo identifica rápidamente infecciones del torrente sanguíneo
Canales
Química Clínica
ver canal
Nanotubos de carbono ayudan a construir sensores precisos para monitoreo continuo de la salud
Los sensores actuales pueden medir diversos indicadores de salud, como los niveles de glucosa en sangre. Sin embargo, es necesario desarrollar materiales para sensores más precisos y sensibles que... Más
Dispositivo basado en papel mejora la precisión de prueba del VIH
En las regiones donde el acceso a las clínicas para realizar análisis de sangre rutinarios presenta obstáculos financieros y logísticos, los pacientes con VIH pueden recolectar... MásDiagnóstico Molecular
ver canal
Novedosa tecnología en POC ofrece resultados precisos del VIH en minutos
Los métodos de diagnóstico del VIH se han basado tradicionalmente en la detección de anticuerpos específicos del VIH, que suelen aparecer semanas después de la infección.... Más
Análisis de sangre descarta riesgo futuro de demencia
Estudios previos han sugerido que biomarcadores específicos, como tau217, neurofilamento ligero (NfL) y proteína ácida fibrilar glial (GFAP), podrían ser valiosos para el d... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásPatología
ver canal
Modelo de IA predice respuesta al tratamiento del cáncer de vejiga
Cada año en Estados Unidos, se diagnostican alrededor de 81.000 nuevos casos de cáncer de vejiga, lo que provoca aproximadamente 17.000 muertes al año. El cáncer de vejiga ... Más
Nuevo método basado en láser acelera diagnóstico del cáncer
Investigadores han desarrollado un método para mejorar el diagnóstico del cáncer y otras enfermedades. El colágeno, una proteína estructural clave, desempeña diversas funciones en la actividad celular.... Más
Nuevo modelo de IA predice efectos de variantes genéticas en enfermedades específicas
En los últimos años, la inteligencia artificial (IA) ha mejorado considerablemente nuestra capacidad para identificar un gran número de variantes genéticas en poblaciones cada... Más
Herramienta de IA diagnostica enfermedad celíaca en imágenes de biopsia con precisión superior al 97%
La enfermedad celíaca es un trastorno autoinmune desencadenado por el consumo de gluten, que causa síntomas como calambres estomacales, diarrea, erupciones cutáneas, pérdida de peso, fatiga y anemia.... MásTecnología
ver canal
Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
Los virus representan un importante riesgo para la salud mundial, como lo demuestran las recientes pandemias, lo que hace que la detección e identificación tempranas sean esenciales para... Más
Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
Los rápidos avances tecnológicos pronto permitirán que las personas eviten procedimientos médicos invasivos simplemente subiendo una captura de pantalla de sus resultados de... MásIndustria
ver canal
Grifols e IBL de Tecan colaboran en paneles de biomarcadores avanzados
Grifols (Barcelona, España), uno de los principales productores mundiales de medicamentos derivados del plasma y soluciones de diagnóstico innovadoras, está ampliando su oferta en... Más