Tecnología de film transparente para mejorar detección de biomarcadores
Por el equipo editorial de LabMedica en español Actualizado el 29 Apr 2014 |

Imagen A: Imágenes de primer plano con un microscopio electrónico de barrido (SEM) que muestra la superficie de film transparente con recubrimiento metálico hecha de una cantidad fija de oro (10 nm) y diferentes espesores de níquel: A la izquierda: 5 nm de espesor. Mitad: 15 nm de espesor. Derecha: 25 nm de espesor (Fotografía cortesía de Optical Materials Express).

Imagen B: Imagen en primer plano de las nuevas nanoestructuras de film transparente, con recubrimiento metálico, tomadas con un microscopio electrónico de barrido (SEM). Cada imagen muestra la superficie del film transparente con recubrimiento metálico hecha con una cantidad fija de níquel (5 nm) y diferentes espesores de oro: Arriba: Espesor de 10 nm. Mitad: Espesor de 20 nm. Inferior: 30 nm de espesor. Las flechas negras en la parte superior indican una nanobrecha (Fotografía cortesía de Optical Materials Express).
Una novedosa técnica usa las arrugas en un film transparente envueltos en metal para aumentar las señales de fluorescencia 1.000 veces. La nueva tecnología puede allanar el camino para dispositivos de diagnóstico y detección de biomarcadores de bajo costo y altamente sensibles para permitir que los consultorios les suministren a sus comunidades la detección más sensible de las enfermedades infecciosas.
Un desafío persistente en la detección de fluorescencia es aumentar la relación señal a ruido de biomarcadores débilmente fluorescentes o de biomoléculas presentes en baja concentración. Además, los métodos actuales para la detección de agentes patógenos infecciosos tienen, predominantemente, un costo prohibitivo en la mayoría de las áreas del mundo. Ahora, un nuevo método utilizando la nanotecnología de film transparente común puede ayudar a resolver ambos problemas.
La nueva tecnología, descrita por H. Sharma et al. en la revista Optical Materials Express el 20 de marzo de 2014, ofrece una manera de aumentar significativamente la señal de los marcadores fluorescentes utilizados en los biosensores mediante el depósito de una combinación de metales sobre film transparente. “Mediante el uso de film transparente, de uso común y procesos de fabricación en masa, podemos hacer nanoestructuras de bajo costo para permitir aumentos en la fluorescencia mayores a 1.000 veces, permitiendo límites de detección inferiores significativamente menores”, dijo Michelle Khine, profesora de ingeniería biomédica en la Universidad de California, Irvine (EUA/). “Si usted tiene una solución con muy pocas moléculas que usted está tratando de detectar, como en el caso de las enfermedades infecciosas, esta plataforma ayudará a amplificar la señal de modo que se pueda detectar a partir de una sola molécula”.
En el método, desarrollado por el equipo de la UC Irvine, dirigido por la Prof. Khine, inicialmente se depositan capas delgadas de oro y de níquel sobre un polímero termoplástico pretensado (película de film-transparente). Cuando se calientan, el film-transparente se contrae, haciendo que las capas de metal más rígidas se tuerzan y arruguen en estructuras con forma de flor que son significativamente más pequeñas de lo que se había alcanzado previamente. Se añaden biomarcadores etiquetados con sondas fluorescentes a la capa de metal arrugado. Específicamente, se observaron más de tres órdenes de magnitud de mejora en la señal de fluorescencia emitida a partir de una sola molécula de anticuerpo inmunoglobulina G (IgG) de cabra, anti-ratón, etiquetada con isotiocianato de fluoresceína, FITC, (FITC-IgG), por excitación de dos fotones.
La emisión mejorada es debida a la excitación de los plasmones localizados en la superficie (oscilaciones coherentes de los electrones libres en el metal). Cuando la luz fue dirigida sobre la superficie arrugada, el campo electromagnético fue amplificado en las nanobrechas entre los pliegues del film transparente. Esto produjo áreas caracterizadas por repentinos estallidos de las señales intensas de fluorescencia de los biomarcadores. Esta es la primera demostración del aprovechamiento de los plasmones en estas nanoestructuras híbridas mediante fluorescencia mejorada por metal (MEF) en las longitudes de onda del infrarrojo cercano. Las estructuras pueden ser sintonizadas para tener una amplia gama de arquitecturas y tamaños de nanobrechas con resonancias de plasmones sintonizables, para lograr grandes mejoras de fluorescencia en otras regiones del espectro de longitud de onda de excitación.
Aunque la configuración actual requiere un equipo costoso, el equipo cree que este método allanará el camino para la creación de un dispositivo integrado, de bajo costo para magnéticamente atrapar y detectar sensiblemente moléculas y nanopartículas marcadas. Sin embargo, los análisis de muestras biológicas son en sí otro reto técnico: “La técnica debe trabajar con la medición de marcadores fluorescentes en muestras biológicas, pero todavía no la he ensayado en fluidos corporales”, dijo la Prof. Khine, quien advierte que la técnica todavía está muy lejos para poder ser usada en la clínica. Por ejemplo, señala: “Actualmente estamos trabajando en tratar de detectar el Rotavirus, pero uno de los principales retos es que nuestra superficie es hidrófoba por lo que la difusión del biomarcador en nuestras estructuras de materiales compuestos es limitada”.
Enlace relacionados:
University of California, Irvine
The Optical Society
Un desafío persistente en la detección de fluorescencia es aumentar la relación señal a ruido de biomarcadores débilmente fluorescentes o de biomoléculas presentes en baja concentración. Además, los métodos actuales para la detección de agentes patógenos infecciosos tienen, predominantemente, un costo prohibitivo en la mayoría de las áreas del mundo. Ahora, un nuevo método utilizando la nanotecnología de film transparente común puede ayudar a resolver ambos problemas.
La nueva tecnología, descrita por H. Sharma et al. en la revista Optical Materials Express el 20 de marzo de 2014, ofrece una manera de aumentar significativamente la señal de los marcadores fluorescentes utilizados en los biosensores mediante el depósito de una combinación de metales sobre film transparente. “Mediante el uso de film transparente, de uso común y procesos de fabricación en masa, podemos hacer nanoestructuras de bajo costo para permitir aumentos en la fluorescencia mayores a 1.000 veces, permitiendo límites de detección inferiores significativamente menores”, dijo Michelle Khine, profesora de ingeniería biomédica en la Universidad de California, Irvine (EUA/). “Si usted tiene una solución con muy pocas moléculas que usted está tratando de detectar, como en el caso de las enfermedades infecciosas, esta plataforma ayudará a amplificar la señal de modo que se pueda detectar a partir de una sola molécula”.
En el método, desarrollado por el equipo de la UC Irvine, dirigido por la Prof. Khine, inicialmente se depositan capas delgadas de oro y de níquel sobre un polímero termoplástico pretensado (película de film-transparente). Cuando se calientan, el film-transparente se contrae, haciendo que las capas de metal más rígidas se tuerzan y arruguen en estructuras con forma de flor que son significativamente más pequeñas de lo que se había alcanzado previamente. Se añaden biomarcadores etiquetados con sondas fluorescentes a la capa de metal arrugado. Específicamente, se observaron más de tres órdenes de magnitud de mejora en la señal de fluorescencia emitida a partir de una sola molécula de anticuerpo inmunoglobulina G (IgG) de cabra, anti-ratón, etiquetada con isotiocianato de fluoresceína, FITC, (FITC-IgG), por excitación de dos fotones.
La emisión mejorada es debida a la excitación de los plasmones localizados en la superficie (oscilaciones coherentes de los electrones libres en el metal). Cuando la luz fue dirigida sobre la superficie arrugada, el campo electromagnético fue amplificado en las nanobrechas entre los pliegues del film transparente. Esto produjo áreas caracterizadas por repentinos estallidos de las señales intensas de fluorescencia de los biomarcadores. Esta es la primera demostración del aprovechamiento de los plasmones en estas nanoestructuras híbridas mediante fluorescencia mejorada por metal (MEF) en las longitudes de onda del infrarrojo cercano. Las estructuras pueden ser sintonizadas para tener una amplia gama de arquitecturas y tamaños de nanobrechas con resonancias de plasmones sintonizables, para lograr grandes mejoras de fluorescencia en otras regiones del espectro de longitud de onda de excitación.
Aunque la configuración actual requiere un equipo costoso, el equipo cree que este método allanará el camino para la creación de un dispositivo integrado, de bajo costo para magnéticamente atrapar y detectar sensiblemente moléculas y nanopartículas marcadas. Sin embargo, los análisis de muestras biológicas son en sí otro reto técnico: “La técnica debe trabajar con la medición de marcadores fluorescentes en muestras biológicas, pero todavía no la he ensayado en fluidos corporales”, dijo la Prof. Khine, quien advierte que la técnica todavía está muy lejos para poder ser usada en la clínica. Por ejemplo, señala: “Actualmente estamos trabajando en tratar de detectar el Rotavirus, pero uno de los principales retos es que nuestra superficie es hidrófoba por lo que la difusión del biomarcador en nuestras estructuras de materiales compuestos es limitada”.
Enlace relacionados:
University of California, Irvine
The Optical Society
Últimas Tecnología noticias
- Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa
- Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre
- Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral
- Teléfonos inteligentes podrían diagnosticar enfermedades mediante escáneres infrarrojos
- Nueva tecnología de sensores permite diagnóstico temprano de trastornos metabólicos y cardiovasculares
- Avance en impresión 3D permite desarrollo a gran escala de diminutos dispositivos microfluídicos
- Plataforma de sensores en papel transforma diagnóstico cardíaco
- Estudio explora impacto de pruebas POC en el futuro de los diagnósticos
- Sensor económico de respuesta rápida permite detección temprana y precisa del cáncer de pulmón
- Nanotecnología para diagnósticar cáncer de cuello uterino podría sustituir pruebas de Papanicolaou
- Plataforma de laboratorio en chip agilizar diagnóstico del cáncer
- Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2
- Nuevo método analiza lágrimas para detectar enfermedades de forma temprana
- Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades
- Biosensor basado en papel para detectar glucosa mediante sudor revoluciona tratamiento de diabetes
- Análisis de sangre con IA identifica pacientes en etapa más temprana del cáncer de mama
Canales
Química Clínica
ver canal
Herramienta química a nanoescala 'brillantemente luminosa' mejora detección de enfermedades
Miles de moléculas brillantes disponibles comercialmente, conocidas como fluoróforos, se utilizan comúnmente en imágenes médicas, detección de enfermedades, marcado... Más
Prueba de detección portátil económica transforma detección de enfermedades renales
Millones de personas padecen enfermedad renal, que a menudo permanece sin diagnosticar hasta que alcanza una etapa crítica. Esta epidemia silenciosa no solo disminuye la calidad de vida de los afectados,... MásDiagnóstico Molecular
ver canal
Prueba de sangre única detecta enfermedades relacionadas con traumatismos
En el acelerado mundo actual, el estrés y el trauma se han convertido, lamentablemente, en experiencias comunes para muchas personas. La exposición continua a las hormonas del estrés... Más
Gen clave identificado en enfermedad cardíaca común revela potencial diagnóstico que salva vidas
La miocardiopatía hipertrófica (MCH) es la cardiopatía hereditaria más prevalente a nivel mundial, afectando aproximadamente a 1 de cada 200 personas y siendo una de las principales... MásHematología
ver canal
Nuevo sistema de puntuación predice riesgo de cáncer a partir de un trastorno sanguíneo común
La citopenia clonal de significado incierto (CCSI) es un trastorno sanguíneo común en adultos mayores, caracterizado por mutaciones en las células sanguíneas y un recuento ... Más
Prueba prenatal no invasiva para determinar estado RhD del feto es 100 % precisa
En los Estados Unidos, aproximadamente el 15 % de las embarazadas son RhD negativas. Sin embargo, en aproximadamente el 40 % de estos casos, el feto también es RhD negativo, lo que hace innecesaria la... MásInmunología
ver canal
Prueba de células madre predice resultado del tratamiento en cáncer de ovario resistente al platino
El cáncer de ovario epitelial suele responder inicialmente a la quimioterapia, pero con el tiempo, el tumor desarrolla resistencia a la terapia, lo que provoca su recrecimiento. Esta resistencia... Más
Análisis de sangre con aprendizaje automático predice respuesta a inmunoterapia en pacientes con linfoma
La terapia de células T con receptores de antígenos quiméricos (CAR) se ha convertido en uno de los avances recientes más prometedores en el tratamiento de los cánceres... MásMicrobiología
ver canal
Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, afectando a aproximadamente 10 millones de personas al año. En 2021, alrededor de 4,2 millones de casos... Más
Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
Las infecciones resistentes a los medicamentos, en particular las causadas por bacterias mortales como la tuberculosis y el estafilococo, se están convirtiendo rápidamente en una emergencia... MásPatología
ver canal
Enfoque diagnóstico innovador mejora significativamente la detección de tuberculosis
La tuberculosis (TB) sigue siendo la enfermedad infecciosa más mortal a nivel mundial, con 10,8 millones de casos nuevos y 1,25 millones de muertes reportadas en 2023. La detección temprana... Más
Método de detección rápido, ultrasensible y sin PCR hace el análisis genético más accesible
Las pruebas genéticas han sido un método importante para detectar enfermedades infecciosas, diagnosticar cáncer en etapa temprana, garantizar la seguridad alimentaria y analizar ADN ambiental.... MásIndustria
ver canal
Cepheid y Oxford Nanopore se unen para desarrollar soluciones con secuenciación automatizada
Cepheid (Sunnyvale, CA, EUA), una empresa líder en diagnóstico molecular, y Oxford Nanopore Technologies (Oxford, Reino Unido), la empresa detrás de una nueva generación de... Más