LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Método de IA combina imágenes satelitales y técnicas de ecología para analizar tejido tumoral

Por el equipo editorial de LabMedica en español
Actualizado el 29 Nov 2023
Print article
Imagen: Los métodos de IA utilizados en las imágenes satelitales pueden ayudar a los investigadores a analizar las imágenes de tumores (Fotografía cortesía del Karolinska Institutet)
Imagen: Los métodos de IA utilizados en las imágenes satelitales pueden ayudar a los investigadores a analizar las imágenes de tumores (Fotografía cortesía del Karolinska Institutet)

Los avances en la tecnología de imágenes de tumores han mejorado significativamente nuestra capacidad para observar los mínimos detalles de los tumores, pero esto también plantea el desafío de interpretar grandes cantidades de datos generados a partir de estas imágenes. Los investigadores suelen verse abrumados con la tarea de analizar datos de cientos de moléculas en decenas de miles de células. Si bien la inteligencia artificial (IA) ofrece una solución potencial para gestionar esta avalancha de información, los métodos tradicionales de IA, como las redes neuronales profundas, a menudo funcionan como una "caja negra", proporcionando resultados sin explicaciones transparentes o comprensibles. Para abordar esto, los científicos ahora están buscando técnicas de IA de otras disciplinas para desarrollar nuevos métodos para interpretar imágenes de tumores.

Investigadores del Karolinska Institutet (Estocolmo, Suecia) y SciLifeLab (Solna, Suecia) han adoptado estrategias de IA comúnmente utilizadas en imágenes satelitales y ecología comunitaria para gestionar y comprender datos complejos de tejidos tumorales. Su trabajo, detallado en la revista Nature Communications , podría allanar el camino para tratamientos contra el cáncer más personalizados. Ya se están utilizando métodos de IA para categorizar e identificar diversas características geográficas en imágenes de satélite, como ciudades, masas de agua y diferentes tipos de paisajes. En el campo de la ecología, se emplean métodos analíticos sofisticados para comprender cómo coexisten diferentes especies en entornos específicos.

Al reconocer los paralelismos entre estos campos y el análisis de tumores, los investigadores aplicaron técnicas similares al estudio de tejidos cancerosos. Los métodos utilizados en imágenes satelitales y ecología se han adaptado para analizar la intrincada dinámica de los tejidos tumorales. Este enfoque ha transformado conjuntos de datos complejos en conocimientos valiosos sobre la naturaleza del cáncer. La siguiente fase consiste en aplicar este novedoso método en ensayos clínicos. El equipo de investigación está colaborando con un importante centro oncológico para determinar por qué sólo ciertos pacientes responden a la inmunoterapia contra el cáncer. Además, están investigando por qué algunas pacientes con cáncer de mama pueden no necesitar quimioterapia. Este uso innovador de la IA en la investigación del cáncer es prometedor para aumentar nuestra comprensión del cáncer y mejorar los resultados de los pacientes.

“Con nuestro nuevo método, podemos revelar detalles importantes en el tejido tumoral que pueden determinar si un tratamiento contra el cáncer funciona o no. El objetivo a largo plazo es poder adaptar los tratamientos contra el cáncer a las necesidades individuales y evitar efectos secundarios innecesarios”, afirmó Jean Hausser, investigador principal del Departamento de Biología Celular y Molecular del Karolinska Institutet, quien dirigió la investigación.

Enlaces relacionados:
Karolinska Institutet
SciLifeLab

Miembro Oro
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
H.pylori Test
Humasis H.pylori Card

Print article

Canales

Diagnóstico Molecular

ver canal
Imagen: el análisis de sangre experimental indica con precisión la gravedad y predice la recuperación potencial de la lesión de la médula espinal (foto cortesía de 123RF)

Análisis de sangre identifica múltiples biomarcadores para diagnóstico rápido de lesiones de médula espinal

Los Institutos Nacionales de Salud estiman que 18.000 personas en Estados Unidos sufren lesiones de la médula espinal (LME) anualmente, lo que resulta en una asombrosa carga financiera de más de 9.... Más

Inmunología

ver canal
Imagen: los hallazgos se basaron en pacientes del ensayo clínico de ADAURA de la terapia dirigida osimertinib para pacientes con CPCNP con mutaciones activadas por EGFR (foto cortesía del equipo multimedia de YSM)

Análisis de sangre podría orientar decisiones futuras sobre tratamiento del cáncer

En el continuo avance de la medicina personalizada, un nuevo estudio ha aportado evidencia que respalda el uso de una herramienta que detecta moléculas derivadas del cáncer en la sangre de... Más

Microbiología

ver canal
Imagen: representación esquemática que ilustra los hallazgos clave del estudio (foto cortesía de la UNIST)

Innovadora tecnología disgnóstica identifica infecciones bacterianas con precisión de casi 100 % en tres horas

La identificación rápida y precisa de microbios patógenos en muestras de pacientes es esencial para el tratamiento eficaz de enfermedades infecciosas agudas, como la sepsis.... Más
Sekisui Diagnostics UK Ltd.