Sistema de microarrays basados en CRISPR permite pruebas masivas para patógenos virales
Por el equipo editorial de LabMedica en español Actualizado el 11 May 2020 |

Imagen: Fotografía del chip de micropozos CARMEN (Fotografía cortesía de Michael James Butts)
Un novedoso sistema de diagnóstico microfluídico basado en ácidos nucleicos es capaz de detectar un virus específico de un catálogo de más de 160 patógenos humanos, incluido el coronavirus COVID-19, simultáneamente en más de mil muestras.
Para permitir la vigilancia de rutina y las aplicaciones de diagnóstico integrales, existe la necesidad de tecnologías de detección que se puedan ampliar para analizar muchas muestras y, al mismo tiempo, detectar múltiples patógenos individuales. Para lograr esto, los investigadores del Instituto Broad del MIT y Harvard (Cambridge, MA, EUA) desarrollaron una plataforma de diagnóstico llamada CARMEN (sigla en inglés para Reacciones Arregladas Combinadas para la Evaluación Multiplexada de Ácidos Nucleicos). El sistema CARMEN depende de gotas de nanolitros que contienen reactivos de detección de ácido nucleico basados en CRISPR/Cas 13.
Los CRISPR (repeticiones palindrómicas cortas agrupadas regularmente y separadas entre sí) son segmentos de ADN procariótico que contienen repeticiones cortas de secuencias de bases. Cada repetición es seguida por segmentos cortos de “ADN espaciador” de exposiciones previas a un virus o plásmido bacteriano.
Los esfuerzos computacionales recientes para identificar nuevos sistemas CRISPR descubrieron un nuevo tipo de enzima dirigida al ARN, Cas13. La diversa familia Cas13 contiene al menos cuatro subtipos conocidos, incluidos Cas13a (anteriormente C2c2), Cas13b, Cas13c y Cas13d. Se demostró que Cas13a se une y escinde el ARN, protegiendo a las bacterias de los fagos de ARN y sirviendo como una plataforma poderosa para la manipulación de ARN. Se sugirió que Cas13a podría funcionar como parte de un sistema CRISPR/Cas versátil, dirigido por el ARN contra el ARN y que tiene un gran potencial para aplicaciones precisas, robustas y escalables de orientación por el ARN contra el ARN.
La plataforma CARMEN consta de un chip de goma, un poco más grande que un teléfono inteligente, que contiene decenas de miles de micropozos diseñados para contener un par de gotitas del tamaño de nanolitros. Una gota contiene material genético viral de una muestra y la otra contiene reactivos de detección de virus.
La detección de ácidos nucleicos virales se realiza mediante una modificación del protocolo SHERLOCK. Este es un método para la detección de moléculas individuales de objetivos de ácido nucleico y significa desbloqueo específico del reportero enzimático de alta sensibilidad. Funciona amplificando secuencias genéticas y programando una molécula CRISPR para detectar la presencia de una firma genética específica en una muestra, que también se puede cuantificar. Cuando encuentra esas firmas, la enzima CRISPR se activa y libera una señal robusta. Esta señal se puede adaptar para trabajar en una simple prueba de tira de papel, en equipos de laboratorio o para proporcionar una lectura electroquímica que se pueda leer con un teléfono móvil.
En la plataforma CARMEN, las gotas de nanolitros que contienen reactivos de detección de ácido nucleico basados en CRISPR se autoorganizan en la matriz de micropozos para emparejarse con las gotas de muestras amplificadas, analizando cada muestra contra cada ARN CRISPR (ARNcr) en replicado. La combinación de detección CARMEN y Cas13 (CARMEN-Cas13) permitió realizar pruebas robustas de más de 4.500 pares de ARNc-objetivo en una sola matriz. El protocolo completo, desde la extracción de ARN hasta los resultados, requirió menos de ocho horas.
Empleando el método CARMEN-Cas13, los investigadores desarrollaron un ensayo multiplexado que simultáneamente diferenciaba 169 virus asociados con humanos con más de 10 secuencias genómicas publicadas e incorporaba rápidamente un ARNcr adicional para detectar el agente causante del coronavirus pandémico COVID-19. CARMEN-Cas13 permitió además el subtipo integral de cepas de influenza A y la identificación multiplexada de docenas de mutaciones de resistencia a los medicamentos contra el VIH.
“Este enfoque miniaturizado para el diagnóstico es eficiente en recursos y fácil de implementar”, dijo el coautor principal, el Dr. Paul Blainey, profesor asociado de ingeniería biológica en el Instituto de Tecnología de Massachusetts. “Las nuevas herramientas requieren creatividad e innovación, y con estos avances en química y microfluídica, estamos entusiasmados con el potencial de CARMEN a medida que la comunidad trabaja para vencer a la COVID-19 y las futuras amenazas de enfermedades infecciosas”.
El método CARMEN-Cas13 se describió en la edición en línea del 29 de abril de 2020 de la revista Nature.
Enlace relacionado:
Instituto Broad del MIT y Harvard
Para permitir la vigilancia de rutina y las aplicaciones de diagnóstico integrales, existe la necesidad de tecnologías de detección que se puedan ampliar para analizar muchas muestras y, al mismo tiempo, detectar múltiples patógenos individuales. Para lograr esto, los investigadores del Instituto Broad del MIT y Harvard (Cambridge, MA, EUA) desarrollaron una plataforma de diagnóstico llamada CARMEN (sigla en inglés para Reacciones Arregladas Combinadas para la Evaluación Multiplexada de Ácidos Nucleicos). El sistema CARMEN depende de gotas de nanolitros que contienen reactivos de detección de ácido nucleico basados en CRISPR/Cas 13.
Los CRISPR (repeticiones palindrómicas cortas agrupadas regularmente y separadas entre sí) son segmentos de ADN procariótico que contienen repeticiones cortas de secuencias de bases. Cada repetición es seguida por segmentos cortos de “ADN espaciador” de exposiciones previas a un virus o plásmido bacteriano.
Los esfuerzos computacionales recientes para identificar nuevos sistemas CRISPR descubrieron un nuevo tipo de enzima dirigida al ARN, Cas13. La diversa familia Cas13 contiene al menos cuatro subtipos conocidos, incluidos Cas13a (anteriormente C2c2), Cas13b, Cas13c y Cas13d. Se demostró que Cas13a se une y escinde el ARN, protegiendo a las bacterias de los fagos de ARN y sirviendo como una plataforma poderosa para la manipulación de ARN. Se sugirió que Cas13a podría funcionar como parte de un sistema CRISPR/Cas versátil, dirigido por el ARN contra el ARN y que tiene un gran potencial para aplicaciones precisas, robustas y escalables de orientación por el ARN contra el ARN.
La plataforma CARMEN consta de un chip de goma, un poco más grande que un teléfono inteligente, que contiene decenas de miles de micropozos diseñados para contener un par de gotitas del tamaño de nanolitros. Una gota contiene material genético viral de una muestra y la otra contiene reactivos de detección de virus.
La detección de ácidos nucleicos virales se realiza mediante una modificación del protocolo SHERLOCK. Este es un método para la detección de moléculas individuales de objetivos de ácido nucleico y significa desbloqueo específico del reportero enzimático de alta sensibilidad. Funciona amplificando secuencias genéticas y programando una molécula CRISPR para detectar la presencia de una firma genética específica en una muestra, que también se puede cuantificar. Cuando encuentra esas firmas, la enzima CRISPR se activa y libera una señal robusta. Esta señal se puede adaptar para trabajar en una simple prueba de tira de papel, en equipos de laboratorio o para proporcionar una lectura electroquímica que se pueda leer con un teléfono móvil.
En la plataforma CARMEN, las gotas de nanolitros que contienen reactivos de detección de ácido nucleico basados en CRISPR se autoorganizan en la matriz de micropozos para emparejarse con las gotas de muestras amplificadas, analizando cada muestra contra cada ARN CRISPR (ARNcr) en replicado. La combinación de detección CARMEN y Cas13 (CARMEN-Cas13) permitió realizar pruebas robustas de más de 4.500 pares de ARNc-objetivo en una sola matriz. El protocolo completo, desde la extracción de ARN hasta los resultados, requirió menos de ocho horas.
Empleando el método CARMEN-Cas13, los investigadores desarrollaron un ensayo multiplexado que simultáneamente diferenciaba 169 virus asociados con humanos con más de 10 secuencias genómicas publicadas e incorporaba rápidamente un ARNcr adicional para detectar el agente causante del coronavirus pandémico COVID-19. CARMEN-Cas13 permitió además el subtipo integral de cepas de influenza A y la identificación multiplexada de docenas de mutaciones de resistencia a los medicamentos contra el VIH.
“Este enfoque miniaturizado para el diagnóstico es eficiente en recursos y fácil de implementar”, dijo el coautor principal, el Dr. Paul Blainey, profesor asociado de ingeniería biológica en el Instituto de Tecnología de Massachusetts. “Las nuevas herramientas requieren creatividad e innovación, y con estos avances en química y microfluídica, estamos entusiasmados con el potencial de CARMEN a medida que la comunidad trabaja para vencer a la COVID-19 y las futuras amenazas de enfermedades infecciosas”.
El método CARMEN-Cas13 se describió en la edición en línea del 29 de abril de 2020 de la revista Nature.
Enlace relacionado:
Instituto Broad del MIT y Harvard
Últimas Microbiología noticias
- Perfil de metabolitos fecales predice mortalidad en pacientes críticos
- Sistema portátil de análisis molecular POC descarta infecciones urinarias en 35 minutos
- Prueba de flujo lateral POC detecta infección fúngica mortal más rápido que técnicas existentes
- Prueba de diagnóstico rápido reduce mortalidad por sepsis 39 %
- Análisis de hemocultivo mejora gestión diagnóstica mediante selección de panel específico
- Secuenciación genómica en tiempo real detecta superbacteria que causa infecciones hospitalarias
- Prueba diagnóstica detecta con precisión cáncer colorrectal al identificar firma microbiana en bacterias intestinales
- Prueba rápida junto al paciente predice sepsis con más de 90 % de precisión
- Nuevo análisis de sangre detecta hasta cinco enfermedades infecciosas en punto de atención
- Prueba molecular de heces muestra potencial para diagnosticar tuberculosis en adultos con VIH
- Nueva prueba diagnostica meningitis bacteriana con rapidez y precisión
- Dispositivo portátil ofrece resultados de tuberculosis económico y rápido
- Método basado en IA mejora diagnóstico de infecciones resistentes a fármacos
- Innovadora tecnología identifica infecciones bacterianas con precisión de casi 100 % en tres horas
- Sistema de identificación y PSA ayuda a diagnosticar enfermedades infecciosas y combatir RAM
- Panel gastrointestinal permite detección rápida de cinco patógenos bacterianos comunes
Canales
Química Clínica
ver canal
Procedimiento de medición referencial estandariza resultados de pruebas de amplificación de ácidos nucleicos
Las pruebas de amplificación de ácidos nucleicos (PAAN) desempeñan un papel fundamental en el diagnóstico de una amplia gama de enfermedades infecciosas. Estas pruebas son conocidas... Más
Herramienta tipo bolígrafo rápida y no invasiva detecta opioides en piel
Los opioides, como el fentanilo, la morfina y la oxicodona, son las principales sustancias asociadas con casos de sobredosis en Estados Unidos. Los procedimientos estándar de detección de... MásDiagnóstico Molecular
ver canal
Análisis sanguíneo detecta riesgo de preeclampsia meses antes de los síntomas
La preeclampsia, una complicación del embarazo que se caracteriza por presión arterial alta y disfunción orgánica, sigue siendo una causa importante de problemas de salud maternoinfantil... Más
Prueba mNGS de LCR supera pruebas microbiológicas tradicionales para enfermedades infecciosas
Las pruebas tradicionales y específicas para la identificación de patógenos ofrecen un frustrante juego de adivinanzas, con demasiadas pruebas y muy pocas respuestas.... MásHematología
ver canal
Prueba de cartucho desechable ofrece resultados de hemograma rápidos y precisos
El hemograma completo (HC) es una de las pruebas de laboratorio más solicitadas, crucial para diagnosticar enfermedades, monitorear terapias y realizar exámenes de salud rutinarios.... Más
Primera prueba de monitorización de heparina POC proporciona resultados rápidos
La dosificación de heparina requiere un manejo cuidadoso para evitar complicaciones hemorrágicas y de coagulación. En situaciones de alto riesgo, como la oxigenación por membrana... MásInmunología
ver canal
Análisis de sangre detecta rechazo en pacientes con trasplante de corazón
Tras un trasplante de corazón, los pacientes deben someterse a biopsias quirúrgicas para que los médicos puedan evaluar la posibilidad de rechazo del órgano. El rechazo se produce... Más
Enfoque de biopsia líquida transforma diagnóstico, seguimiento y tratamiento del cáncer de pulmón
El cáncer de pulmón sigue siendo una de las principales causas de muerte por cáncer a nivel mundial. Su complejidad biológica y la diversidad de sus procesos regulatorios dificultan... MásPatología
ver canal
Chip oncológico predice respuesta a quimioterapia específica del paciente
El adenocarcinoma de esófago (ACE), uno de los dos tipos principales de cáncer de esófago, se ubica como la sexta causa principal de muerte por cáncer en todo el mundo y actualmente... Más
Solución de IA clínica para clasificación automática del cáncer de mama mejora precisión diagnóstica
Los laboratorios que utilizan métodos tradicionales de análisis de imágenes suelen sufrir cuellos de botella y retrasos. Al digitalizar sus prácticas de patología, los... MásTecnología
ver canal
Nueva tecnología de biodetección POC mejora detección de biomarcadores moleculares
Los procedimientos de diagnóstico tradicionales en medicina suelen implicar el envío de muestras de sangre o tejido del paciente a laboratorios clínicos, donde científicos capacitados... Más
Encuesta revela que gestión mejorada de datos de laboratorio e IA son cruciales para laboratorios del futuro
Los datos desempeñan un papel fundamental en la transformación de los laboratorios digitales actuales, actuando como un desafío clave y como un catalizador para la innovación,... MásIndustria
ver canal
La AMP publica guía de mejores prácticas para laboratorios clínicos que ofrecen pruebas HRD
La prueba de deficiencia de recombinación homóloga (HRD) identifica tumores incapaces de reparar eficazmente el daño del ADN mediante la vía de reparación de la reco... Más