LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Inteligencia artificial permite el análisis rápido de las imágenes de los pulmones en los pacientes con COVID-19

Por el equipo editorial de LabMedica en español
Actualizado el 27 Apr 2020
Imagen: Radiografía de tórax de un paciente con neumonía por COVID-19, radiografía original (izquierda) y resultado con IA para neumonía (derecha) (Fotografía cortesía de UC San Diego Health)
Imagen: Radiografía de tórax de un paciente con neumonía por COVID-19, radiografía original (izquierda) y resultado con IA para neumonía (derecha) (Fotografía cortesía de UC San Diego Health)
Los radiólogos y los médicos de UC San Diego Health (San Diego, CA, EUA) utilizan inteligencia artificial (IA) para aumentar el análisis de imágenes de pulmón en un estudio de investigación clínica habilitado por Amazon Web Services (AWS). El objetivo es detectar rápidamente la neumonía y, por lo tanto, poder diferenciar mejor entre los pacientes con COVID-19 que probablemente necesiten más atención de apoyo en el hospital y aquellos que podrían ser seguidos de cerca en el hogar

Hasta ahora, la nueva capacidad de IA ha proporcionado a los médicos de UC San Diego Health una visión única de más de 2.000 imágenes. En un caso, a un paciente en el Departamento de Urgencias que no tenía ningún síntoma de COVID-19 le practicaron una radiografía de tórax por otras razones. Sin embargo, la lectura de IA de la radiografía indicó signos de neumonía temprana, que luego fue confirmada por un radiólogo. Como resultado, el paciente fue examinado para detectar la COVID-19 y se encontró que era positivo para la enfermedad.

Los investigadores de UC San Diego habían desarrollado inicialmente un algoritmo de aprendizaje automático que permite a los radiólogos usar IA para mejorar sus propias habilidades para detectar neumonía en las radiografías de tórax. Entrenado con 22.000 anotaciones por radiólogos humanos, el algoritmo superpone las radiografías con mapas codificados por colores que indican la probabilidad de neumonía. Más recientemente, los investigadores aplicaron este enfoque de IA a 10 radiografías de tórax, publicadas en revistas médicas, de cinco pacientes tratados en China y EUA para COVID-19. El algoritmo localizó consistentemente áreas de neumonía, a pesar del hecho de que las imágenes fueron tomadas en varios hospitales diferentes y variaron considerablemente en técnica, contraste y resolución. A continuación, el método de IA se implementó en UC San Diego Health en un estudio de investigación clínica que permite a cualquier médico o radiólogo obtener una estimación inicial sobre la probabilidad de que un paciente tenga neumonía en cuestión de minutos, en el punto de atención. Los investigadores creen que las radiografías de tórax son más baratas, el equipo es más portátil y más fácil de limpiar, y los resultados se obtienen más rápidamente que con muchos otros diagnósticos.

“Ahí es donde las imágenes pueden jugar un papel importante. Podemos clasificar rápidamente a los pacientes al nivel adecuado de atención, incluso antes de que se confirme oficialmente un diagnóstico de COVID-19”, dijo Albert Hsiao, MD, PhD, profesor asociado de radiología en la Facultad de Medicina de la Universidad de California en San Diego y radiólogo en UC San Diego Health.

“A medida que nos preparamos para un aumento potencial de los pacientes con COVID-19, no solo las habitaciones de los pacientes y los suministros pueden ser limitados, sino también la capacidad del médico y del personal”, dijo Christopher Longhurst, MD, director de información y director médico asociado de UC San Diego Health. “Por lo tanto, es tremendamente útil contar con herramientas que permitan a los médicos que no tienen tanta experiencia como los radiólogos en la lectura de rayos X, tener una idea rápida de lo que ven, especialmente los médicos de urgencias y de los hospitales de primera línea”.

Enlace relacionado:
UC San Diego Health

New
Miembro Oro
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Urine Chemistry Control
Dropper Urine Chemistry Control

Canales

Diagnóstico Molecular

ver canal
Imagen: la prueba de biopsia líquida basada en nanotecnología podría identificar el cáncer en sus primeras etapas (foto cortesía de 123RF)

Análisis sanguíneo de cáncer en 2 horas transforma detección de tumores

El glioblastoma y otros cánceres agresivos siguen siendo difíciles de controlar, principalmente porque los tumores pueden reaparecer después del tratamiento. Los métodos de... Más

Patología

ver canal
Imagen: un informe de caso de fibrosarcoma en adulto ha mostrado la importancia del diagnóstico temprano y la terapia dirigida (foto cortesía de Sultana y Sailaja/Oncoscience)

Análisis patológico preciso mejora resultados del tratamiento del fibrosarcoma en adultos

El fibrosarcoma en adultos es una neoplasia maligna poco frecuente y muy agresiva que se desarrolla en el tejido conectivo y suele afectar las extremidades, el tronco o la región de la cabeza y el cuello.... Más

Tecnología

ver canal
Imagen: diseño conceptual de la cápsula CORAL para el muestreo microbiano en el intestino delgado (H. Mohammed et al., Devuce (2025). DOI: 10.1016/j.device.2025.100904)

Muestras de cápsulas inspiradas en corales ocultan bacterias intestinales

El microbioma intestinal se ha vinculado a afecciones que van desde trastornos inmunitarios hasta problemas de salud mental. Sin embargo, las pruebas de heces convencionales a menudo no logran detectar... Más