Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Algoritmo de firma ligera permite diagnósticos médicos más rápidos y precisos

Por el equipo editorial de LabMedica en español
Actualizado el 01 May 2025

Cada material o molécula interactúa con la luz de forma única, creando un patrón distintivo, similar a una huella dactilar. La espectroscopia óptica, que consiste en aplicar un láser a un material y observar cómo interactúa la luz con él, es una técnica ampliamente utilizada en química, ciencia de materiales y medicina. Sin embargo, interpretar los datos espectrales resultantes puede ser complejo y requerir mucho tiempo, especialmente cuando las diferencias entre muestras son sutiles. Ahora, se ha desarrollado un nuevo algoritmo de aprendizaje automático (ML) para interpretar eficazmente las "firmas luminosas" o espectros ópticos de moléculas, materiales y biomarcadores de enfermedades, lo que ofrece la posibilidad de realizar diagnósticos médicos y análisis de muestras con mayor rapidez y precisión.

El algoritmo, conocido como Regresión Logística de Red Elástica Sensible a los Picos (PSE-LR), fue desarrollado por investigadores de la Universidad Rice (Houston, Texas, EUA) específicamente para analizar datos basados en la luz. El PSE-LR no solo es capaz de clasificar con precisión diferentes muestras, sino que también ofrece transparencia en su proceso de toma de decisiones, una característica de la que carecen muchos modelos avanzados de aprendizaje automático (ML). El algoritmo proporciona un "mapa de importancia de características" que destaca las partes específicas del espectro que contribuyeron a una decisión de clasificación particular, lo que facilita la interpretación, verificación y aplicación de los resultados. En pruebas que comparan el PSE-LR con otros modelos de ML, demostró un rendimiento superior, especialmente en la identificación de características espectrales sutiles o superpuestas.


Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)
Imagen: Ziyang Wang y Shengxi Huang han desarrollado una herramienta que permite ideas precisas sobre proteínas virales y marcadores de enfermedades cerebrales (foto cortesía de Jeff Fitlow/Universidad Rice)

El modelo también destacó en diversas pruebas del mundo real, como la detección de concentraciones ultrabajas de la proteína de la espícula del SARS-CoV-2 en muestras de fluidos, la identificación de soluciones neuroprotectoras en tejido cerebral de ratones, la clasificación de muestras de la enfermedad de Alzheimer y la diferenciación entre semiconductores 2D. Este nuevo algoritmo podría allanar el camino para la creación de nuevos diagnósticos, biosensores o nanodispositivos. Los espectros ópticos de tejidos u otras muestras biológicas pueden proporcionar información valiosa sobre lo que ocurre dentro del organismo. Esta capacidad es crucial, ya que una detección más rápida y precisa de enfermedades puede conducir a mejores tratamientos y potencialmente salvar vidas. Más allá de la atención médica, el método también puede ayudar a los científicos a comprender mejor los nuevos materiales, facilitando el desarrollo de biosensores más inteligentes y nanodispositivos más eficaces.

“Imaginen poder detectar los primeros signos de enfermedades como el Alzheimer o la COVID-19 con solo iluminar una gota de líquido o una muestra de tejido”, afirmó Ziyang Wang, estudiante de doctorado en ingeniería eléctrica e informática de Rice y primer autor de un estudio publicado en ACS Nano. “Nuestro trabajo lo hace posible al enseñar a las computadoras a interpretar mejor la señal de luz dispersada por moléculas diminutas”.


Miembro Oro
ENSAYOS TDM PARA ANTIPSICÓTICOS
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay
New
Pipet Controller
Stripettor Pro

Últimas Tecnología noticias

Tecnología de microchip desechable podría detectar selectivamente VIH en muestras de sangre completa

Dispositivo microfluídico Dolor en un Chip determina tipos de dolor crónico desde muestras de sangre

Innovador sensor fluorométrico sin etiquetas permite detección más sensible del ARN viral