Técnica no invasiva y sin reactivos utiliza espectroscopía Raman y aprendizaje automático para la detección de la COVID-19
Actualizado el 11 Feb 2022
Los investigadores desarrollaron un método nuevo y mejorado que utiliza la espectroscopia Raman y el aprendizaje automático para la detección del SARS-CoV-2.
La técnica no invasiva y sin reactivos para la detección eficiente de la COVID-19 fue desarrollada por investigadores biomédicos en el Polytechnique Montreal (Montreal, Canadá). Las técnicas de reacción en cadena de la polimerasa con transcripción inversa (RT-PCR) son actualmente el estándar de oro para detectar el SARS-COV-2, el virus que causa la COVID-19, aunque tienen ciertas limitaciones. La RT-PCR implica el transporte de muestras a un laboratorio clínico para su análisis, lo que plantea dificultades logísticas. También requiere el uso de reactivos, que podrían ser escasos y pueden ser menos efectivos cuando el virus muta. Además, las pruebas de RT-PCR pueden llevar mucho tiempo y ser menos sensibles en personas asintomáticas, lo que las hace inviables para una detección rápida generalizada. Por lo tanto, los investigadores tratan de idear métodos novedosos para una mejor detección de infecciones por COVID-19 en entornos de punto de atención, sin la necesidad de enviar muestras para su análisis.
La nueva técnica de detección sin reactivos utiliza el aprendizaje automático y la espectroscopia Raman basada en láser con muestras de saliva. A diferencia de los hisopos nasofaríngeos, el muestreo de saliva es más seguro y no invasivo. Los investigadores utilizan habitualmente la espectroscopia Raman para determinar la composición molecular de las muestras. En pocas palabras, las moléculas dispersan los fotones incidentes (partículas de luz) de una manera única que depende de las estructuras químicas y los enlaces subyacentes. Los investigadores pueden detectar e identificar moléculas en función de su “huella digital” característica o espectro Raman, que se obtiene al iluminar las muestras y medir la luz dispersada.
La COVID-19 puede causar cambios químicos en la composición de la saliva. Con base en este conocimiento, el equipo de investigación analizó 33 muestras positivas para COVID-19 clínicamente emparejadas con un subconjunto de un total de 513 muestras de saliva negativas para COVID-19. Los espectros Raman que obtuvieron, luego se entrenaron en modelos de aprendizaje de múltiples instancias, en lugar de los convencionales. Los resultados de este método indican una exactitud de alrededor del 80 % y los investigadores descubrieron que tener en cuenta el sexo al nacer era importante para lograr esta exactitud. Aunque la composición de la saliva se ve afectada por la hora del día, así como por la edad del paciente y otras condiciones de salud subyacentes, esta técnica aún puede demostrar ser un gran candidato para la detección de la COVID-19 en el mundo real. Estos hallazgos pueden facilitar una mejor detección de la COVID-19 además de allanar el camino para nuevas herramientas para otras enfermedades infecciosas.
“Nuestro método sin etiquetas supera muchas limitaciones de las pruebas de RT-PCR. Trabajamos para comercializarlo como un sistema más rápido, robusto y de bajo costo, con una exactitud potencialmente mayor”, dijo Katherine Ember, investigadora postdoctoral en el Polytechnique Montreal, Canadá, y primera autora del estudio. “Esto se podría integrar fácilmente con los flujos de trabajo de detección viral actuales, adaptarse a nuevos virus e infecciones bacterianas, así como tener en cuenta las variables de confusión a través de nuevos enfoques de aprendizaje automático. Paralelamente, trabajamos para reducir aún más el tiempo de análisis mediante el uso de superficies metálicas nanoestructuradas para contener la muestra de saliva”.
Enlaces relacionados: