Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Plataforma de laboratorio en chip agilizar diagnóstico del cáncer

Por el equipo editorial de LabMedica en español
Actualizado el 31 Jan 2025

El cáncer fue responsable de casi 10 millones de muertes en 2020, lo que representa casi una de cada seis muertes en todo el mundo. El diagnóstico oportuno del cáncer sigue siendo un gran desafío, ya que el crecimiento celular anormal a menudo se detecta demasiado tarde. El diagnóstico temprano es fundamental y las investigaciones recientes se han centrado en la detección de células tumorales circulantes raras (CTC) en sangre periférica como marcadores no invasivos para el diagnóstico. Sin embargo, aislar las células diana para su examen es inherentemente difícil. Los métodos tradicionales suelen requerir una preparación compleja de las muestras, un equipo sustancial y grandes volúmenes de muestra, e incluso así, sigue siendo un desafío separar las células de manera eficiente.

Investigadores de la Universidad Tecnológica KN Toosi (Teherán, Irán) han presentado un sistema innovador que utiliza ondas acústicas superficiales estacionarias para separar las CTC de los glóbulos rojos con una precisión y una eficiencia notables. El sistema desarrollado por el equipo integra modelos computacionales avanzados, análisis experimental y algoritmos de inteligencia artificial (IA) para analizar fenómenos acústico-fluídicos complejos. Al combinar algoritmos de aprendizaje automático con modelos basados en datos, pudieron ajustar el sistema para lograr tasas óptimas de recuperación y separación de células. La plataforma, descrita en la revista Physics of Fluids, logra una recuperación del 100 % en condiciones ideales, al tiempo que reduce significativamente el consumo de energía mediante un control preciso de las presiones acústicas y los caudales.


Imagen: ilustración del chip acústico-microfluídico óptimo fabricado para la escala (foto cortesía de Afshin Kouhkord y Naserifar Naser)
Imagen: ilustración del chip acústico-microfluídico óptimo fabricado para la escala (foto cortesía de Afshin Kouhkord y Naserifar Naser)

Si bien se han desarrollado muchos métodos para enriquecer partículas mediante microfluidos, aquellos que utilizan acustofluidos se destacan por su biocompatibilidad, capacidad para generar magnitudes de fuerza elevadas en rangos de presión de MPa y producción de longitudes de onda a escala celular. El novedoso enfoque de los investigadores incorpora campos acústicos de presión dualizados, que mejoran el impacto en las células objetivo, y los posiciona estratégicamente en puntos críticos en la geometría del microcanal sobre un sustrato de niobato de litio. Al aplicar presión acústica dentro del microcanal, el sistema genera conjuntos de datos confiables que revelan los tiempos de interacción celular y los patrones de trayectoria, lo que ayuda a predecir la migración de células tumorales.

“Hemos creado una plataforma avanzada de laboratorio en un chip que permite la separación de células en tiempo real, con eficiencia energética y gran precisión”, afirmó el investigador Afshin Kouhkord. “La tecnología promete mejorar la eficiencia de la separación de CTC y abrir nuevas posibilidades para un diagnóstico más temprano y eficaz del cáncer. También allana el camino para la microingeniería y la IA aplicada a la medicina personalizada y el diagnóstico del cáncer”.


Miembro Oro
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Miembro Oro
ANALIZADOR DE VIABILIDAD/DENSIDAD CELULAR AUTOMATIZADO
BioProfile FAST CDV
New
Male Fertility Rapid Test
SP-10
New
Strongyloides Stercoralis Test
Strongyloides IgG ELISA

Últimas Tecnología noticias

Plataforma de biosensores detecta simultáneamente vitamina C y SARS-CoV-2

Nuevo método analiza lágrimas para detectar enfermedades de forma temprana

Sensores basados en FET abren camino a dispositivos de diagnóstico portátiles para detectar múltiples enfermedades