Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

CELLAVISION AB

Herramienta de IA detecta pequeños grupos de proteínas en imágenes de microscopía en tiempo real

Por el equipo editorial de LabMedica en español
Actualizado el 06 Jun 2024

Más de 55 millones de personas en todo el mundo padecen enfermedades relacionadas con la demencia, como el Alzheimer y el Parkinson. Estas afecciones son causadas por la acumulación de los componentes más pequeños del cuerpo que altera las funciones vitales. Dentro de nuestras células, se producen de forma natural numerosas interacciones e intercambios entre proteínas y otras moléculas, lo que permite que nuestro cuerpo funcione correctamente. Sin embargo, los errores en estos procesos pueden provocar acumulaciones de proteínas que perjudican la funcionalidad, lo que sustenta una variedad de trastornos neurodegenerativos que afectan al cerebro, incluidos el Alzheimer y la demencia. Comprender por qué se produce esta acumulación y cómo tratarla sigue siendo difícil de alcanzar, en gran parte debido a la falta de herramientas adecuadas para estudiar estos fenómenos. Los investigadores han introducido ahora una herramienta innovadora que puede encontrar estos pequeños grupos de proteínas en imágenes de microscopía y conducir a una mejor comprensión y tratamientos de enfermedades como el cáncer, el Alzheimer y el Parkinson.

Científicos de la Universidad de Copenhague (Copenhague, Dinamarca) han desarrollado un algoritmo de aprendizaje automático capaz de observar la agrupación de proteínas en tiempo real bajo un microscopio. Este algoritmo es capaz de identificar y monitorear automáticamente las características críticas de los bloques de construcción agrupados responsables del Alzheimer y otras enfermedades neurodegenerativas, una tarea que antes era inalcanzable. Puede detectar grupos de proteínas tan pequeños como una milmillonésima de metro en imágenes de microscopía y clasificarlos por su forma y tamaño mientras rastrea su desarrollo. La apariencia física de estos grumos influye significativamente en su función y comportamiento dentro del cuerpo, ya sea perjudicial o beneficioso.


Imagen: Proteínas de insulina que se agrupan (foto cortesía de Jacob Kæstel-Hansen)
Imagen: Proteínas de insulina que se agrupan (foto cortesía de Jacob Kæstel-Hansen)

En el futuro, este algoritmo simplificará el proceso de descubrir por qué se forman los grumos, ayudando así al desarrollo de nuevos medicamentos y terapias para combatir estos trastornos debilitantes. Los investigadores utilizan activamente esta herramienta en experimentos con moléculas de insulina que, cuando se agrupan, pierden su capacidad de regular eficazmente el azúcar en sangre. La herramienta permite observar cómo cambian estos grupos cuando se exponen a diversos compuestos, allanando el camino para detenerlos o alterarlos potencialmente en formas menos dañinas o más estables. El equipo es optimista sobre el potencial de la herramienta para facilitar el desarrollo de fármacos una vez que estos pequeños componentes básicos se identifiquen con precisión. Anticipan que sus esfuerzos iniciarán la recopilación de conocimientos más completos sobre las formas y funciones de proteínas y moléculas. El algoritmo es accesible como software de código abierto en Internet para que lo utilicen investigadores científicos y otras personas interesadas en explorar la agrupación de proteínas y otras moléculas.

"En sólo unos minutos, nuestro algoritmo resuelve un desafío que llevaría a los investigadores varias semanas. Es de esperar que el hecho de que ahora sea más fácil estudiar imágenes microscópicas de proteínas agrupadas contribuya a nuestro conocimiento y, a largo plazo, conduzca a nuevas terapias para los trastornos cerebrales neurodegenerativos", dijo el doctor Jacob Kæstel-Hansen, quien dirigió el equipo de investigación detrás del algoritmo.

Enlaces relacionados:
Hatzakis Lab
Universidad de Copenhague


New
Miembro Platino
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
PRUEBA DE ANTIPÉPTIDO CÍCLICO CITRULINADO
GPP-100 Anti-CCP Kit
New
Miembro Oro
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Últimas Patología noticias

Nueva herramienta permite una mejor clasificación de variantes hereditarias que causan enfermedades

Método de detección CRISPR determina rápidamente el mecanismo de enfermedad a partir de los tejidos

Nueva herramienta de inteligencia artificial clasifica los tumores cerebrales de forma más rápida y precisa



LGC Clinical Diagnostics