Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Modelo de IA predice resultados de pacientes en múltiples tipos de cáncer

Por el equipo editorial de LabMedica en español
Actualizado el 21 Dec 2023

En investigaciones anteriores, los científicos han examinado el impacto de las mutaciones en los genes que codifican factores epigenéticos (elementos que influyen en la activación o desactivación de genes) sobre la susceptibilidad al cáncer. Sin embargo, la comprensión de la influencia de los niveles de estos factores en la progresión del cáncer ha permanecido en gran medida inexplorada. Para abordar esta brecha, los investigadores han desarrollado un innovador modelo de inteligencia artificial (IA) basado en factores epigenéticos que pronostica con éxito los resultados de los pacientes en varios tipos de cáncer. Lo hace analizando los patrones de expresión genética de factores epigenéticos dentro de los tumores y categorizándolos en distintos grupos. Se ha demostrado que este método predice los resultados de los pacientes de manera más efectiva que las métricas convencionales como el grado y el estadio del cáncer. Además, estos conocimientos proporcionan una base para futuras terapias dirigidas a factores epigenéticos en el tratamiento del cáncer, como las histonas acetiltransferasas y los remodeladores de cromatina SWI/SNF.

Investigadores de UCLA Health (Los Ángeles, CA, EUA) examinaron los patrones de expresión de 720 factores epigenéticos en tumores de 24 tipos de cáncer diferentes. Clasificaron estos tumores en grupos únicos según estos patrones. Su estudio reveló que en 10 de estos tipos de cáncer, los grupos se correlacionaban con diferencias significativas en los resultados de los pacientes, incluida la supervivencia libre de progresión, la supervivencia específica de la enfermedad y la supervivencia general. Esta correlación fue particularmente notable en el carcinoma adrenocortical, el carcinoma de células claras renales, el glioma cerebral de grado inferior, el carcinoma hepatocelular de hígado y el adenocarcinoma de pulmón. En estos casos, los grupos que indicaban peores resultados generalmente mostraban estadios de cáncer más avanzados, tamaños de tumores más grandes o una diseminación más avanzada.


Imagen: La progresión de un tumor también puede reflejar los factores epigenéticos que determinan la conformación estructural del ADN (Fotografía cortesía de 123RF)
Imagen: La progresión de un tumor también puede reflejar los factores epigenéticos que determinan la conformación estructural del ADN (Fotografía cortesía de 123RF)

Luego, los investigadores utilizaron niveles de expresión genética del factor epigenético para entrenar un modelo de IA, con el objetivo de predecir los resultados de los pacientes específicamente en los cinco tipos de cáncer donde las diferencias de supervivencia eran más significativas. El modelo pudo segregar con precisión a los pacientes en dos grupos: aquellos que probablemente tendrían mejores resultados y aquellos que enfrentaron peores resultados. En particular, los genes más críticos para las predicciones del modelo de IA se superpusieron significativamente con los genes característicos que definen el grupo.

"Nuestra investigación ayuda a proporcionar una hoja de ruta para modelos de IA similares que pueden generarse a través de listas de factores epigenéticos de pronóstico disponibles públicamente", dijo el primer autor del estudio, Michael Cheng, estudiante de posgrado en el Programa Interdepartamental de Bioinformática de UCLA. "La hoja de ruta demuestra cómo identificar ciertos factores influyentes en diferentes tipos de cáncer y contiene un potencial interesante para predecir objetivos específicos para el tratamiento del cáncer".

Enlaces relacionados:
UCLA Health  


New
Miembro Oro
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Liquid Based Cytology Production Machine
LBP-4032

Últimas Patología noticias

Tecnología de código de barras diagnostica el cáncer con mayor precisión

Mapeo de células de placa aterosclerótica predice riesgo de accidente cerebrovascular o ataque cardíaco

Análisis de células inmunes mediante IA predice pronóstico del cáncer de mama