Aplicación de IA en patología revela nuevos conocimientos en diagnóstico del cáncer de endometrio
Actualizado el 20 Dec 2022
El carcinoma endometrial es el cáncer más común del tracto ginecológico. Ahora, los investigadores han demostrado que el poder de la inteligencia artificial (IA) se puede aplicar a imágenes de microscopía de carcinoma de endometrio, ofreciendo nuevos conocimientos que podrían mejorar el diagnóstico y el tratamiento del cáncer de útero.
En los últimos años, investigadores de la Universidad de Leiden (Leiden, Países Bajos) desempeñaron un papel destacado en el desarrollo de un nuevo sistema de clasificación de tumores basado en alteraciones moleculares, que dio como resultado cuatro subtipos de cáncer de endometrio. Esta vez, el equipo se dispuso a investigar si era posible predecir estas clases moleculares, basándose únicamente en imágenes de microscopía. Los investigadores aplicaron inteligencia artificial en imágenes de microscopía de miles de imágenes de carcinoma endometrial de pacientes que participaron en el estudio.
El equipo desarrolló un modelo que predice con solidez las cuatro clases moleculares de carcinomas de endometrio basándose en una imagen de microscopía de portaobjetos teñida con (hematoxilina y eosina), que es la tinción histológica estándar utilizada en el diagnóstico para la evaluación de la clasificación tumoral y la subtipificación histológica. Este modelo no era "una caja negra", pero a través de la ingeniería inversa, los investigadores pudieron mostrar qué características de la imagen eran relevantes para sus predicciones. El modelo proporcionó al equipo importantes conocimientos novedosos que se pueden utilizar en estudios futuros para mejorar aún más el diagnóstico, el pronóstico y el tratamiento de pacientes con cáncer de endometrio.
“La aplicación de la IA en patología está surgiendo”, dijo el Dr. Tjalling Bosse de la Universidad de Leiden. “En este proyecto estudiamos la morfología de tumores que compartían la misma alteración molecular para comprender mejor el efecto que tienen estos cambios en la apariencia del tumor. Con este trabajo, el modelo informático nos ha dirigido a áreas dentro y fuera del tumor que son importantes”.
“En el diagnóstico del cáncer, el número de variables (moleculares, morfología tumoral, datos del paciente) ha aumentado exponencialmente y ha complicado la predicción del pronóstico del paciente”, añade Sarah Fremond. “A través del entrenamiento de modelos de IA imparciales, las predicciones de IA también pueden enseñar a los patólogos a cambio, por ejemplo, identificando detalles morfológicos novedosos en imágenes de diapositivas de microscopía con valor pronóstico”.
Enlaces relacionados:
Universidad de Leiden