IA autosupervisada mejora precisión diagnóstica del melanoma con un acuerdo patológico bajo

Por el equipo editorial de LabMedica en español
Actualizado el 14 Nov 2022

Los resultados del estudio sobre la nueva inteligencia artificial (IA) que predice la concordancia diagnóstica del melanoma destacan el potencial de la tecnología para mejorar la precisión diagnóstica de esta forma mortal de cáncer de piel y otras enfermedades con baja concordancia patológica.

El estudio retrospectivo de Proscia (Filadelfia, Pensilvania, EUA) "Uso de representaciones de imágenes de diapositivas completas del aprendizaje contrastivo autosupervisado para la regresión de concordancia de melanoma" demostró el rendimiento de la IA en 1.412 imágenes de diapositivas completas de biopsias de piel. Cada imagen fue evaluada por tres a cinco dermatólogos patólogos para establecer una tasa de concordancia. La correlación R2 entre las predicciones de la tecnología y las tasas de concordancia de los dermatólogos patólogos fue de 0,51. La investigación de Proscia también indica que la misma IA podría extenderse a otros diagnósticos que demuestren un bajo acuerdo patológico. Esto incluye la estadificación del cáncer de mama, así como la clasificación de Gleason del cáncer de próstata, que se utiliza para evaluar la agresividad de la enfermedad. Ambos a menudo juegan un papel importante en la información de las decisiones de tratamiento.


Imagen: Los resultados del estudio sobre la nueva inteligencia artificial predicen la concordancia de diagnóstico para el melanoma (Fotografía cortesía de Proscia)

Además de este estudio, Proscia planea realizar investigaciones adicionales que ilustren los beneficios potenciales de la IA para ayudar a los patólogos a diagnosticar el melanoma, que incluyen:

"Con este estudio, hemos sentado las bases para un nuevo caso de uso de la IA en patología que podría tener un tremendo impacto en los resultados de los pacientes", dijo Sean Grullon, científico principal de IA de Proscia y autor principal del estudio. “Nuestra tecnología se basa en el aprendizaje autosupervisado para reconocer patrones increíblemente sutiles, lo que demuestra el poder de uno de los enfoques más avanzados en IA”.

Enlaces relacionados:
Proscia  


Últimas Patología noticias