Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria

BIOHIT  Healthcare OY

Evalúan el uso de receptores de células T asociados al cáncer para la detección de tumores malignos

Por el equipo editorial de LabMedica en español
Actualizado el 31 Aug 2020
Un objetivo clave en oncología es el diagnóstico temprano del cáncer, pues es cuando es más tratable. A pesar de décadas de progreso, el diagnóstico temprano de los pacientes asintomáticos se mantiene como un desafío importante. La mayoría de los métodos para esto implican la detección de células cancerosas, pero un enfoque diferente, centrado en la respuesta inmunitaria del cuerpo.

El sistema inmunológico adaptativo reconoce los antígenos tumorales en una etapa temprana para erradicar las células cancerosas. Este proceso se acompaña de la proliferación sistémica de los linfocitos T específicos del antígeno tumoral. Si bien la detección de cánceres asintomáticos en etapa temprana es un desafío debido al tamaño pequeño del tumor y las alteraciones somáticas limitadas, el seguimiento de los cambios en el repertorio de células T periféricas puede proporcionar una solución atractiva para el diagnóstico del cáncer.

Imagen: Predicción de novo de receptores de células T asociados al cáncer para la detección no invasiva del cáncer (Fotografía cortesía de UT Southwestern Medical Center).
Imagen: Predicción de novo de receptores de células T asociados al cáncer para la detección no invasiva del cáncer (Fotografía cortesía de UT Southwestern Medical Center).

Los científicos médicos del Centro Médico de la UT Southwestern (Dallas, TX, EUA), desarrollaron un método de aprendizaje profundo, llamado DeepCAT, para permitir la predicción de novo de los receptores de células T asociadas al cáncer (TCR). Ellos validaron DeepCAT usando TCR específicos de cáncer o no cancerosos, obtenidos de múltiples estudios de clasificación de multímeros del complejo principal de histocompatibilidad I (MHC-I) y demostraron su poder de predicción para los TCR específicos de antígenos del cáncer. DeepCAT se utiliza aplicando un método computacional para detectar secuencias de CDR3 de células T que se infiltran en el tumor a partir de datos de secuenciación de ARN de miles de muestras del Atlas del Genoma del Cáncer.

El equipo aplicó DeepCAT para diferenciar a más de 250 pacientes con cáncer de más de 600 individuos sanos utilizando secuencias de TCR en sangre y observó una alta exactitud en la predicción. DeepCAT también pudo identificar los TCR del cáncer (caTCR) en muestras de sangre de pacientes con cáncer de riñón, ovario, páncreas o pulmón en estadio temprano. Los autores afirman que el método tiene ciertas limitaciones, incluida la incapacidad de determinar el tejido de origen del cáncer, y señalan que las condiciones inflamatorias podrían afectar el desempeño de DeepCAT.

Los autores concluyeron que la puntuación de cáncer no pretende reemplazar los métodos de diagnóstico actuales en este momento. Más bien, se deben realizar esfuerzos futuros para explorar si el uso combinado de la puntuación del cáncer con las modalidades de detección existentes puede mejorar la exactitud del diagnóstico en los pacientes. Este trabajo prepara el escenario para el uso del repertorio de TCR de sangre periférica para la detección no invasiva del cáncer. El estudio fue publicado el 19 de agosto de 2020 en la revista Science Translational Medicine.

Enlace relacionado:
Centro Médico de la UT Southwestern


Últimas Patología noticias