Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Análisis de sangre diferencia los tumores benignos de las condiciones precancerosas

Por el equipo editorial de LabMedica en español
Actualizado el 21 Sep 2021
La principal causa de mortalidad de los pacientes con síndrome de predisposición al cáncer neurofibromatosis tipo 1 (NF1), es el desarrollo de un tumor maligno de la vaina del nervio periférico (MPNST), un sarcoma de tejido blando agresivo. En el contexto de la NF1, este tipo de cáncer surge con frecuencia de su precursor común y benigno, el neurofibroma plexiforme (NP).

A pesar de la alta incidencia y mortalidad del MPNST en la población NF1, la detección de transformación maligna y la monitorización de MPNST es un desafío. El examen clínico tiene poca sensibilidad y solo puede significar MPNST cuando una lesión de NP muestra un crecimiento repentino o causa dolor intenso. Las biopsias de NP seriadas no son prácticas, ya que entre el 9% y el 21% de los pacientes con NF1 tendrán NP múltiple, con niveles variables de potencial maligno que requieren vigilancia.

Imagen: El fluorómetro Invitrogen Qubit 4, diseñado para medir con exactitud la cantidad de ADN, ARN y proteínas (Fotografía cortesía de Thermo Fisher Scientific)
Imagen: El fluorómetro Invitrogen Qubit 4, diseñado para medir con exactitud la cantidad de ADN, ARN y proteínas (Fotografía cortesía de Thermo Fisher Scientific)

Oncólogos especializados de la Facultad de Medicina de la Universidad de Washington (St. Louis, MO, EUA) y sus colegas evaluaron el ADN libre de células (ADNlc) en muestras de plasma sanguíneo de 16 voluntarios no afectados y 37 individuos con NF1, incluidos muestras de 23 pacientes con NP y 46 muestras de 14 individuos con MPNST.

El equipo extrajo ADN libre de células (ADNlc) del plasma, utilizando el kit de ácido nucleico circulante QIAamp (Qiagen, Hilden, Alemania). La concentración de ADN extraído se midió utilizando el ensayo Qubit dsDNA High-Sensitivity (Thermo Fisher Scientific, Waltham, MA, EUA) y la concentración y calidad del ADNlc se evaluaron con un bioanalizador o Tapestation (Agilent Technologies, Santa Clara, CA, EUA). Las bibliotecas construidas se equilibraron, agruparon y secuenciaron mediante lecturas de extremos emparejados de 150 pb en un NovaSeq o HiSeq 4000 (Illumina, San Diego, CA, EUA).

Los investigadores informaron que, basándose en los tamaños de los fragmentos de ADNlc, los perfiles de número de copias y los patrones de inestabilidad genómica, desarrollaron un clasificador que podía discriminar entre individuos con o sin las condiciones tumorales y diferenciar las formas malignas y benignas de la enfermedad con un 86% de exactitud (75% sensibilidad y especificidad del 91%) en individuos no tratados. En las muestras recolectadas a lo largo del tiempo, informó el equipo, la herramienta basada en ADNlc clasificó correctamente el 89% de los casos de MPNST y NP, con un 83% de sensibilidad y una especificidad de alrededor del 91%. Cuando los investigadores cuantificaron el ADNlc en muestras seriadas de MPNST para sus análisis de prueba de concepto, encontraron que el método puede ayudar a rastrear la respuesta al tratamiento y a detectar la enfermedad residual mínima relacionada con la recaída después del tratamiento en puntos de tiempo en los que la ERM no era visible con imágenes radiográficas.

Los científicos observaron que el ADNlc en plasma de pacientes con MPNST y NP albergaba una pérdida focal del número de copias de NF1 que no se encuentra en donantes sanos y que el ADNlc del paciente con MPNST también tenía una inestabilidad genómica tumoral significativamente mayor en comparación con la NP, con alteraciones en el número de copias en los loci genómicos clave previamente observadas en el tejido MPNST, lo que permitió la discriminación sensible y específica del MPNST del NP con la biopsia líquida.

Los autores concluyeron que los niveles de fracción tumoral derivados del tamaño del fragmento de ADNlc y el análisis de alteración del número de copias del ADNlc plasmático, utilizando secuenciación del genoma completo de paso ultrabajo (ULP-WGS), se correlacionaron significativamente con la carga tumoral de MPNST, diferenciando con exactitud el MPNST de su precursor NP benigno, y correlacionado dinámicamente con la respuesta al tratamiento. En el futuro, sus hallazgos podrían formar la base para una mejor detección y monitoreo temprano del cáncer en poblaciones de alto riesgo con predisposición al cáncer. El estudio fue publicado el 31 de agosto de 2021 en la revista PLOS Medicine.

Enlace relacionado:
Facultad de Medicina de la Universidad de Washington
Thermo Fisher Scientific
Agilent Technologies
Illumina


Miembro Platino
PRUEBA RÁPIDA COVID-19
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Miembro Oro
Plasma Control
Plasma Control Level 1

Últimas Diagnóstico Molecular noticias

Técnica de enriquecimiento de ácido nucleico circulante en sangre permite diagnóstico no invasivo del cáncer de hígado

Primera prueba molecular aprobada por la FDA para detectar malaria en donantes de sangre podría mejorar seguridad del paciente

Prueba de biomarcadores líquidos detecta enfermedades neurodegenerativas antes de que aparezcan síntomas