LabMedica

Deascargar La Aplicación Móvil
Noticias Recientes Expo COVID-19 Química Clínica Diagnóstico Molecular Hematología Inmunología Microbiología Patología Tecnología Industria Focus

Nanotubos de carbono fluorescentes detectan con precisión bacterias y virus

Por el equipo editorial de LabMedica en español
Actualizado el 01 Aug 2023

Un equipo de investigación interdisciplinario compuesto por científicos de la Ruhr University Bochum (RUB, Bochum, Alemania) ha desarrollado un método innovador para construir sensores ópticos modulares capaces de identificar virus y bacterias. El equipo utilizó nanotubos de carbono fluorescentes unidos a un nuevo tipo de anclajes de ADN que sirven como asas moleculares. Estas estructuras de anclaje se pueden utilizar para conjugar unidades de reconocimiento biológico, como anticuerpos aptámeros, a los nanotubos, lo que permite la interacción con moléculas bacterianas o virales. Esta interacción impacta la fluorescencia de los nanotubos, causando que sus niveles de brillo aumenten o disminuyan.

El equipo de investigación utilizó nanosensores tubulares compuestos de carbono, cada uno con un diámetro de menos de un nanómetro. Cuando se irradian con luz visible, estos nanotubos emiten luz infrarroja cercana, un espectro invisible para el ojo humano pero ideal para aplicaciones ópticas debido a la reducción significativa de otras señales dentro de este rango. Anteriormente, el equipo había manipulado con éxito la fluorescencia de los nanotubos para detectar biomoléculas vitales. Su último esfuerzo involucró la personalización de sensores de carbono para una fácil detección de varias moléculas objetivo.


Imagen: Modelo impreso en 3D de un nanotubo de carbono (Fotografía cortesía de RUB)
Imagen: Modelo impreso en 3D de un nanotubo de carbono (Fotografía cortesía de RUB)

Este avance se logró con la ayuda de estructuras de ADN con defectos cuánticos de guanina. Este proceso implicó unir bases de ADN al nanotubo para introducir un defecto en la estructura de cristal del nanotubo. En consecuencia, la fluorescencia de los nanotubos experimentó un cambio de nivel cuántico. Además, el defecto funcionó como una asa molecular, lo que permitió agregar una unidad de detección que podría ajustarse a la respectiva molécula objetivo para identificar una proteína viral o bacteriana específica.

El equipo demostró el nuevo concepto de sensor apuntando a la proteína Spike del SARS-CoV-2. Los investigadores utilizaron aptámeros que se unen a la proteína Spike del SARS-CoV-2, luego de lo cual los sensores fluorescentes indicaron de manera confiable la presencia de la proteína. En particular, la selectividad y la estabilidad de los sensores que tenían defectos cuánticos de guanina superaron a las de los sensores sin tales defectos, especialmente cuando están en solución.

Enlaces relacionados:
Ruhr University Bochum


Miembro Oro
CONTROLADOR DE PIPETA SEROLÓGICA
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
High Performance Centrifuge
CO336/336R
New
Piezoelectric Micropump
Disc Pump

Últimas Diagnóstico Molecular noticias

Simple análisis de sangre mejora predicción del riesgo de ataque cardíaco y ACV

Prueba de biomarcadores sanguíneos podría detectar predisposición genética al Alzheimer

Se descubre nuevo autoanticuerpo contra DAGLA en cerebelitis



Sekisui Diagnostics UK Ltd.